
Adapting to Risk? How Investor Beliefs Shape Climate Adaptation

in Real Estate Portfolios
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Abstract

As environmental and physical risks intensify, investors face mounting pressure to adapt

their investment strategies to physical climate risks. This paper examines the impact of

climate risks on real estate portfolio investment decisions. We build a unique dataset where

we can identify changes in the composition of purchases and sales for real estate portfolios

across the US and the investments in the resilience of individual assets. Using localized heat

events as quasi-exogenous shocks and a difference-in-differences approach, we find that port-

folio managers adjust their strategies in two key ways. First, they shift investments toward

properties with lower-risk exposure. Second, they increase spending on protective building

improvements and risk-related insurance for vulnerable properties. This paper contributes

to the literature by analyzing how institutional investors integrate physical climate risks into

portfolio strategies for their real estate investments.
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1. Introduction

This paper examines how institutional investors adapt to physical climate risks through

their acquisition and resilience decisions regarding real assets and their investments in cli-

mate resilience measures. Real estate has become a cornerstone of institutional investment

portfolios, with pension funds allocating an average of 8.3% of their assets to it, totaling

approximately $10 trillion in private real estate holdings and $1.2 trillion in listed REITs

(Carlo et al., 2021; Andonov et al., 2015). This allocation reflects institutional investors’

expectation that real estate provides diversification benefits and reduces portfolio volatility

(Andonov et al., 2021; Chambers et al., 2021).1

Despite the prominent role of the real estate sector for investors and the growing evi-

dence of the threat of climate in real estate markets (Bernstein et al., 2019; Addoum et al.,

2024), there is scant evidence of how institutional investors actively adapt their investment

strategies to address climate risk. This knowledge gap is critical, as extreme weather events’

increasing severity and frequency pose significant risks to assets and investments (IPCC,

2022; Hsiang et al., 2017). Over the past four decades, the associated losses have increased

nearly 10-fold globally (Smith and Matthews, 2015). In 2023 alone, there were 28 separate

climate disaster events with losses exceeding 1 billion each in the US (NOAA, 2024). At

the same time, insured losses hit record highs, and uninsured losses are growing even faster,

amplifying financial risks (Munich Re, 2025). In recent survey data, Krueger et al. (2020)

document that institutional investors rank climate risk lower than financial and operational

risks but still consider it important.

Against this background, institutional investors are increasingly pushed to adapt their

portfolio strategies in response to the growing vulnerability of properties to physical climate

risks. CRE holders have recently faced growing pressure from debt and equity providers and

regulators to disclose how (physical) climate risks affect their assets (Ilhan et al., 2023). Mar-

1According to MSCI Inc., in 2022, approximately US$13.5 trillion of global real estate assets were under
institutional management for investment purposes. The National Association of Real Estate Investment
Trusts (NAREIT) (2022) estimated that the total value of commercial real estate (CRE) in the US in 2021
was $20.7 trillion. Additionally, pension, endowment, and foundation funds controlled over $12 trillion in
total assets, with almost $900 billion invested in real estate as of 2021.

1



ket participants’ inadequate response to climate risks through misallocation of capital could

lead to significant portfolio losses and broader economic impacts. Yet, these adjustments are

not uniform—while some investors proactively integrate climate risks into their strategies,

many others hesitate to act due to short-term financial incentives, uncertainty about climate

risk projections, or future regulatory enforcement.2 Therefore, understanding whether and

how institutional investors adapt to physical climate risks is critical for the investment in-

dustry and policy design. This insight is essential for developing effective macroeconomic

policies and portfolio management strategies to address climate risk adaptation.

This paper examines how investors adapt to climate risks in their real asset investments

through two different channels: portfolio reallocation decisions and investments in climate

resilience measures of individual assets. We integrate transaction data on commercial real

estate (CRE) properties from Real Capital Analytics (RCA) with property-level financial and

accounting data from the National Council of Real Estate Investment Fiduciaries (NCREIF)

to track the real estate portfolios of 40,371 institutional investors from 2015 to 2021. To

assess climate risk exposure, we incorporate property-level climate risk data from Moody’s,

covering a comprehensive set of physical climate hazards for our sample of each property

in the portfolio (N=649,723), including floods, hurricanes, cyclones, typhoons, sea-level rise,

wildfires, water stress, and extreme temperatures. In addition to hazard-specific risk scores,

we also utilize the Average Damage Rate (ADR) provided by Moody’s. ADR quantifies the

expected annual damage as a percentage of property value and enables consistent monetary

comparisons of climate risk exposure across properties and hazard types.

We exploit localized heat events at institutional investors’ primary office sites as quasi-

exogenous shocks to their climate beliefs (Alekseev et al., 2022; Di Giuli et al., 2022) and

examine how these shocks influence subsequent investment decisions. Specifically, we identify

idiosyncratic shifts in portfolios’ climate risk beliefs and employ a difference-in-differences

approach to model their decisions to acquire or divest CRE assets across different levels of

climate risk.

2In March 2024, the US Securities and Exchange Commission (SEC) adopted final rules requiring publicly
traded companies to disclose climate-related risks and their potential material impacts (U.S. Securities and
Exchange Commission, 2024).

2



Our findings reveal that, after the climate risk perception shift, institutional investors

reallocate their portfolios toward lower-risk properties and increase capital expenditures on

building improvements and insurance coverage, exceeding prevailing market trends. These

results offer valuable insights into how climate risks are integrated into institutional invest-

ment strategies and their influence on asset pricing.

This paper relates to a growing body of literature investigating how climate risks affect

real estate assets.3 Current studies, which mostly focus on residential real estate, consistently

show that climate risks such as floods, wildfires, hurricanes, or extreme temperatures result

in price discounts on exposed properties (Ortega and Tas.pınar, 2018; Bernstein et al., 2019;

Murfin and Spiegel, 2020; Baldauf et al., 2020a; Giglio et al., 2021). However, the extent to

which physical climate risk affects CRE is unclear (Hino and Burke, 2021; Baldauf et al.,

2020a; Giglio et al., 2021). This paper contributes to the literature by focusing explicitly

on portfolio management adaptation strategies. It offers a detailed examination of how

institutional investors adapt their strategies in their real estate portfolios in response to

climate risks.

We also contribute to the growing body of research that examines how investor beliefs

about climate risk shape financial decision-making. Choi et al. (2019) find that retail in-

vestors respond to abnormal local temperatures by increasing attention to climate change,

reflected in Google search volume and stock market behavior, while institutional investors

do not.4 Alekseev et al. (2022) identifies climate-related belief shocks of fund managers to

build hedge portfolios for climate risks. Alok et al. (2019) show that professional money

managers overreact to nearby climate disasters, significantly underweighting disaster-zone

stocks, which harms fund performance. Complementing these findings, Di Giuli et al. (2022)

examine mutual fund voting on environmental proposals, showing that climate beliefs influ-

ence institutional investor engagement strategies. Together, these studies highlight the role

of climate beliefs in shaping investment decisions and corporate governance. Our research

3See Clayton et al. (2021) for a literature review.
4Similarly, exposures to climate hazard incidents, such as heat stress (Choi et al., 2020), flood (Bruine de

Bruin et al., 2014; Niu et al., 2023), or hurricane (Holtermans et al., 2023), also influence beliefs regarding
climate issues.
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extends this discussion to real estate, providing unique insights into how climate risks influ-

ence asset allocation decisions. We also examine the channels through which climate risks

shape asset allocation and investments in the resilience of their portfolios.

The remainder of the paper is structured as follows. Section 2 describes the different data

sets. Section 3 presents the empirical methodology and discusses the identifying assumptions.

Section 4 discusses the results. Section 5 concludes.

2. Data

We combine CRE transaction records, property-level climate risk assessments, detailed fi-

nancial information, and localized extreme weather events to examine how CRE institutional

investors adapt their portfolios to climate risks. Table 1 shows descriptive statistics.

2.1. Real estate transactions and property-level financial records

We utilize property transaction records from RCA between 2015 and 2021, which cover

807,290 transactions across 649,723 unique properties by 40,371 unique investors, 34,703

unique buyers, and 25,472 unique sellers. This period captures the recently growing aware-

ness of climate risks in the CRE industry. RCA’s data provides rich information about each

transaction, accurately identifying the actual buyers and sellers and detailing their charac-

teristics. The dataset features the property transaction price, the age of the building, its net

operating income, the capital intensity, and the size of the plot of land on which the build-

ing is located. It also includes property characteristics like the type of commercial building

(office, industrial, residential, or retail), a quality index based on the building’s physical

characteristics, and the building’s number of units.

Moreover, the data set contains detailed information on buyer and seller characteristics,

such as the geographic scope of the buyer/seller (local, national, continental, and global),

whether the buyer is foreign, the type of deal between buyer and seller, and whether the

building owner resolved a situation of distress.

We complement the RCA dataset with detailed quarterly property financial records from

NCREIF. The quarterly NCREIF data contains acquisition dates and transaction prices for

4



Variable Mean Std Dev 0.25 Median 0.75

PANEL A: Transaction and Property Details: (N = 807,290)

Price (million $) 51.17 102.04 10.55 26.67 57.80
Building age (year) 29.81 23.46 14.00 28.00 38.00
Recent renovation (year) 116.43 444.48 4.00 10.00 20.00
Floor area (1000 sq.ft) 250.77 476.87 70.51 153.69 297.69
Walkscore (0-100) 46.19 28.64 24.00 42.00 67.00
Transitscore (0-100) 42.66 30.96 25.00 37.00 61.00
Caprate (percentage) 0.06 0.01 0.05 0.05 0.06
Occupancy (percentage) 0.90 0.18 0.90 0.96 1.00

PANEL B: Financial Information (N = 99,113) (×1000 $):

Quarterly CapEx 365.68 2,702.23 0.00 8.10 141.63
CapEx on building improvements 241.20 2,824.03 0.00 0.00 31.11
Quarterly Opex 446.37 946.00 63.66 203.56 491.72
Insurance expenditures 14.88 33.49 2.27 6.91 16.35
Net operating income (NOI) 433.82 1,192.25 33.09 198.44 525.82

PANAL C: Climate Risk Impact Score (N = 649,723) (0-100):

All categories 57.61 28.13 31.00 55.00 89.00
Floods 11.53 23.53 0.00 0.00 8.00
Heat stress 65.65 12.25 57.00 65.00 75.00
Hurricanes typhoons 39.26 40.42 0.00 50.00 78.00
Sea level rise 2.42 11.96 0.00 0.00 0.00
Water stress 39.43 21.80 29.00 33.00 49.00
Wildfires 18.55 26.83 0.00 0.00 28.00
Earthquakes 51.68 27.30 30.00 44.00 72.00

PANEL D: Annualized Climate Risk Damage (N = 649,723) (×1000 $):

All categories 54.71 220.42 3.82 11.25 37.64
Floods annualized 4.94 86.04 0.00 0.00 0.04
Heat stress 5.89 11.78 1.13 2.89 6.81
Hurricanes typhoons 12.60 60.52 0.00 0.05 2.73
Sea level rise 6.63 122.16 0.00 0.00 0.00
Water stress 1.79 4.15 0.21 0.69 1.76
Wildfires 0.77 6.36 0.00 0.00 0.08
Earthquakes 22.10 97.76 0.12 0.45 5.32

Table 1: Descriptive Statistics

approximately 30,000 US properties. In addition, the data features information about market

value appraisals, net operating income, quarterly capital expenditures, insurance expendi-

tures, operating expenses, and the property’s hedonic characteristics (property location, age,

property type, leverage, ownership structure, owning fund, and type of fund). Our analysis

uses expenditure categories most responsive to climate risk considerations, specifically capital

expenditure on building improvements and insurance costs. These line items are particularly

relevant as they directly reflect adaptive responses to climate challenges— increased build-

ing improvement allocations may signify investments in energy efficiency enhancements or

resilience features. At the same time, elevated insurance expenditures potentially indicate
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climate risk pricing by insurers. This targeted approach isolates financial decisions most

likely influenced by climate risk management strategies.

2.2. CRE portfolio construction

We first track changes in their property holdings over time to understand how CRE investors

adapt their portfolios to climate risks. A primary challenge is the absence of a comprehensive

database directly recording the complete portfolio holdings of all CRE investors. To address

this, we reconstruct investor portfolios using RCA data. Cvijanović et al. (2022) demonstrate

the reliability and breadth of RCA data. RCA transaction histories allow researchers to

accurately identify actual institutional buyers and sellers, enabling a credible reconstruction

of investment portfolios and investment behavior. Specifically, RCA’s extensive coverage

allows us to identify each investor’s initial holdings by observing properties that appear

only as sales without prior purchase records, indicating these properties were owned at the

beginning of the study period. Subsequently, we dynamically track portfolio changes through

subsequent purchases and sales.

Formally, let Ti,(j1,j2),t denote a transaction where property i is transferred from seller j1

to buyer j2 at time t. Define J = {jk}Nk=1 as the set of all investors (buyers or sellers). For

each investor jk ∈ J , we construct their portfolio Pjk,t as follows:

For any transaction Ti,(j1,j2),t – meaning investor j2 buys from investor j1 at time t – we

update the buyer’s portfolio by adding property i:

Pj2,t = Pj2,t−1 ∪ {i}

We identify each investor’s initial holdings by observing properties only appearing as

sales (without prior purchase records). These form the initial portfolio Pjk,0. Subsequently,

we dynamically update portfolios at each transaction Ti,(j1,j2),t by adding property i to the

buyer’s portfolio and removing it from the seller’s portfolio:

Pj2,t = Pj2,t−1 ∪ {i}, Pj1,t = Pj1,t−1 \ {i}.
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For instance, an investor jk with initial holdings Pjk,0 = {i1, i2, i3} acquiring property i4

at t1 will have an updated portfolio Pjk,t1 = {i1, i2, i3, i4}. If the same investor later sells

property i3 at t2, their portfolio adjusts to Pjk,t2 = {i1, i2, i4}.

While acknowledging certain limitations – such as incomplete ownership transparency

or multi-layered investment structures (e.g., joint ventures or LLC ownership) – RCA re-

mains the most robust dataset for capturing actual institutional investment patterns. RCA’s

meticulous identification of counterparties enables accurate mapping of property transfers to

institutional portfolios, providing strong assurance of the reconstructed portfolios’ validity

as realistic proxies.

After constructing portfolios, we integrate transaction data with property-level financial

records from NCREIF using unique building identifiers. We then aggregate expenditures

related to climate risks, such as capital improvements and insurance, at the portfolio level.

Formally, for portfolio Pjk,t at time t, the total expenditure is:

Exjk,t =
∑

i∈Pjk,t

Exi,

where Exi denotes the expenditure for property i from NCREIF records.

2.3. Property-level climate risk assessment

To understand how investors adapt to climate risks, we examine the data environment shap-

ing these decisions. Most institutional CRE investors rely on the same source for property-

level climate risk assessments: Moody’s Risk Management Solutions (RMS), our primary

data source for property-level climate risk assessment. RMS is a widely recognized market

leader in climate hazard modeling (Moody’s Corporation, 2021). The widespread adoption

of RMS means that investors operate with a shared understanding of risk exposure, shaping

consistent expectations across the market and influencing portfolio strategies accordingly.

RMS provides standardized exposure scores for key climate hazards, including floods, hur-

ricanes & typhoons, sea level rise, water stress, and wildfires. The methodology combines

location-specific hazard modeling based on publicly available climate model datasets (e.g.,
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the North American CORDEX program NA-CORDEX or the World Climate Research Pro-

gram [WCRP] ’s Coupled Model Intercomparison Project Phase 5 [CMIP5] and Phase 6

[CMIP6]), together with detailed property characteristics, including construction type, age,

and building quality.5 Specifically, the hazard model estimates each location’s severity of

climate-related hazards. Then, this estimate is combined with the property characteristics

to get an overall risk exposure evaluation (e.g., risk score, financial loss) of the property.

Moody’s validates hazard and property-level loss modeling results by back-testing against

historical disaster events and financial losses.

For each hazard, properties receive a risk score ranging from 0 (no risk) to 100 (highest

risk) measuring the probability of getting hit by climate risk hazards, derived from over

25 risk indicators based on various public and private data sources.6 These risk scores are

time-invariant under a given climate model.

Apart from providing detailed risk scores, the RMS dataset also includes the Average

Damage Rate (ADR) – the expected annual damage expressed as a share of the property’s

total value. This measure is central to our analysis, as it translates diverse physical climate

hazards into a standard financial metric that allows for consistent, portfolio-level exposure

comparisons. By normalizing risks across perils, geographies, and asset types, ADR enables

us to evaluate how institutional investors perceive and respond to different types of climate

threats in monetary terms. ADR is foundational in translating complex hazard models

into expected financial impacts directly relevant to investment decisions (Moody’s Investors

Service, 2023). Given RMS’s status as an industry standard in real estate climate risk

modeling, ADR provides a consistent and credible basis for analyzing investor adaptation

behavior in response to climate risk.

2.4. Climate Information Shock Events

A key challenge in studying investor adaptation is identifying when investors become more

aware of climate risks and adjust their commercial real estate (CRE) portfolios. We cannot

5See Appendix Appendix A for details.
6Table A.8 in Appendix A shows the climate risk categories and severity levels.
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directly observe changes in beliefs. Instead, we infer shifts in perception from changes in

investor behavior following extreme local weather events. This approach builds on the idea

that direct exposure to climate events makes risks more salient to decision-makers.

We identify climate events using data from the Spatial Hazard Events and Losses Database

for the United States (SHELDUS). This county-level dataset reports natural hazards such

as thunderstorms, hurricanes, floods, wildfires, tornadoes, and perils like flash floods and

heavy rainfall (CEMHS, 2024). The data span from 1960 to the present and include the

event date, location (county and state), and associated damages. These damages include

property and crop losses, injuries, and fatalities. Following Di Giuli et al. (2022), we define

a local heat shock as any event that reports injuries or deaths due to extreme heat. These

events indicate severe disruption and serve as our baseline measure of investor exposure.

Other studies identify climate shocks using temperature anomalies based on historical

weather records. However, Alekseev et al. (2022) show that using injuries and deaths of-

fers a more robust identification strategy. We include robustness checks using alternative

definitions to verify the consistency of our results.

Next, we determine which investors are exposed to each climate event. We use the

Google Maps API to identify primary office locations for each investor. These include the

main headquarters and up to five active branch offices. We base this identification on activity

patterns such as user visits and online reviews. This method better reflects where investment

decisions are likely made. 7

3. Empirical Analysis

We examine whether investors exposed to localized environmental risks adjust their CRE

portfolios. In particular, we test whether institutional investors change their property ac-

quisition and disposition behavior after experiencing extreme heat events near their primary

office locations. Our approach builds on evidence that localized exposure to climate shocks

can influence decision-making. For example, Di Giuli et al. (2022) show that fund managers

7We avoid using registered legal addresses, which often correspond to administrative or legal entities
rather than operational centers (Menz et al., 2013).
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who experience abnormal heat are more likely to support climate-related proposals.

3.1. Empirical Setting

We focus on local extreme heat events as a channel through which investors may update

their beliefs about climate risks. Long-term environmental changes unfold slowly and may

not be directly observable. In contrast, extreme heat events provide immediate and salient

experiences that can shape investor perceptions. We use these localized shocks at investors’

operational headquarters as a source of quasi-exogenous variation in climate risk salience.

Our identification strategy relies on attribute substitution, where individuals respond

to complex, abstract risks by focusing on more tangible cues such as local temperature

anomalies (Kahneman et al., 2002). Investors may not fully grasp the long-term financial

implications of climate change. However, a severe heatwave in their community can prompt

them to reassess climate risks. Several studies document similar belief-updating behavior

after exposure to local climate events (Bernstein et al., 2019; Baldauf et al., 2020b; Kang

et al., 2024).

Localized heat events offer several advantages over broader natural disasters. They vary

across space and time, allowing us to compare affected (treatment group) to unaffected (con-

trol group) portfolios. In contrast to large-scale disasters that elicit market-wide responses,

these events enable more precise identification of behavioral change.

To evaluate investor behavior, we examine CRE portfolio transactions before and after

heat shocks. We test whether investors increase acquisitions of lower-risk properties or shift

capital expenditures in response to local climate events. Figure 1 displays the geographic

distribution of portfolio headquarters and the occurrence of extreme heat events at the county

level.

We use a difference-in-differences framework to estimate how climate belief shocks affect

investment decisions. Because heat events occur at different times across different locations,

traditional two-way fixed effects models may yield biased estimates (Baker et al., 2022; Roth

et al., 2023). When treatment timing varies, already-treated units may enter the control

group, distorting causal inference.
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Figure 1: County-level heatmap of primary office locations of CRE portfolios (top) and number
of severe extreme heat events (bottom)
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To avoid these pitfalls, we adopt a stacked-regression approach (Cengiz et al., 2019;

Di Giuli et al., 2022; Wing et al., 2024). This method creates independent event-study cohorts

for each shock, ensuring clean comparisons between treated and never-treated portfolios. For

a given shock g occurring in location A at time t0, we define a time window of (t0−dt, t0+dt),

where dt = 4 quarters. Within each window, we identify treated portfolios as those with

offices in A and control portfolios as those never exposed to any heat shock over the sample

period.

Figure 2 shows the number of treated and control transactions by cohort. The distribution

supports our choice of 2015 as the starting year. Before 2015, the treatment group was small

relative to the control group, consistent with industry reports suggesting that most CRE

investors began to take climate risk seriously only in the mid-2010s. The rise in heat shock

exposure aligns with a broader shift in climate risk awareness across the real estate sector.

3.2. Climate Risk and Portfolio Adaptation

We use a difference-in-differences model to analyze how climate belief shocks affect CRE

portfolio decisions. The analysis uses a stacked dataset covering all shock cohorts from 2015

to 2021. We estimate the model separately for property acquisition (buying) and disposition

(selling) transactions:

RiskScorei,j,g,t = β0 + β1(Treatmenti,j,g,t × PostShocki,j,g,t)

+ β2Xi,t + σj + δg + τt + εi,j,g,t

(1)

The subscripts indicate property (i), portfolio (j), climate shock cohort (g), and time (t).

The dependent variable, RiskScorei,j,g,t, measures the climate risk probability associated

with property i that portfolio j buys or sells at time t during shock cohort g.

Our primary explanatory variable is the interaction between two indicator variables:

Treatmenti,j,g,t and PostShocki,j,g,t. The variable Treatmenti,j,g,t equals one if portfolio

j’s primary office experiences climate shock g. The variable PostShocki,j,g,t equals one for

periods after the shock event. Thus, the interaction term captures whether investors exposed

to shocks subsequently alter their property selection toward lower-risk assets compared to
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Figure 2: Stacked-regression cohorts on property transactions This figure reports the number of
transactions by treated and control CRE portfolios in each cohort, defined by the year-quarter of the tem-
perature shock. Each cohort includes transactions within four quarters before and after the shock.
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unaffected investors.

We include portfolio fixed effects (σj) to control for portfolio-specific characteristics that

do not vary over time. Shock cohort fixed effects (δg) control for cohort-specific differences

in the severity or type of climate event. Time fixed effects (τt) account for broader tempo-

ral trends affecting all portfolios. The vector Xi,t includes property-level control variables.

Specifically, we control for net operating income, property size, type, year built, and ren-

ovation status. We cluster standard errors at the cohort-portfolio level. The coefficient of

interest, β1, measures how affected investors change the climate risk profile of properties

they buy or sell relative to unaffected investors.

In addition to analyzing property-level risk probabilities (RiskScorei,j,g,t), we examine

the expected financial impacts of these hazards using the Average Damage Rate (ADR).

The ADR provides a standardized financial metric across different climate hazard types.

While RiskScorei,j,g,t reflects the likelihood of physical climate events, ADR translates these

probabilities into economic terms, allowing direct comparison across hazard types. By sup-

plementing our probability-based results with ADR, we assess whether investor decisions

reflect economically rational adjustments based on anticipated financial consequences of cli-

mate risks, beyond mere awareness of abstract probabilities. This dual approach demon-

strates investors’ sensitivity to both scientific climate projections and their tangible financial

implications.

3.3. Climate Risk Adaptation and Expenditures: New Purchases

Next, we investigate whether investors exposed to climate shocks adapt their portfolios by

strategically selecting properties based on their expenditure profiles. Specifically, we test

whether treated portfolios systematically buy or sell properties associated with different

levels of capital expenditures or insurance costs. We estimate the following model:

Expenditurei,j,g,t = β0 + β1(Treatmenti,j,g,t × PostShocki,j,g,t)

+ β2Xi,t + σj + δg + τt + εi,j,g,t

(2)

Here, the dependent variable, Expenditurei,j,g,t, captures expenditures related to prop-
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erty i when portfolio j buys or sells it during period t of cohort g. We consider various ex-

penditure types, including total capital expenditures, building improvements, and insurance

costs. Higher building improvement expenses indicate proactive investments in resilience or

energy efficiency upgrades. Similarly, higher insurance expenditures could reflect a strategic

choice to protect against future climate risks.

The NCREIF dataset reports Expenditure measures quarterly. Therefore, we face a

timing challenge when interpreting results. Observed expenditure changes could reflect two

distinct scenarios. First, investors exposed to heat shocks might selectively target properties

with favorable recent expenditure histories. Alternatively, these investors might actively

increase spending immediately after acquisition, implementing climate resilience measures

post-purchase.

To address this ambiguity, we separately analyze property expenditures for several quar-

ters before and after each transaction. Pre-transaction analyses clarify whether investors pre-

fer properties with specific expenditure histories. Post-transaction analyses reveal whether

investors directly invest in resilience measures after acquiring new properties. By differen-

tiating between these two scenarios, we gain deeper insight into how climate belief shocks

influence property selection and subsequent investment behavior.

Another concern is distinguishing between proactive responses by investors to climate in-

formation and passive reactions triggered by actual climate damage to properties. Increased

expenditures might represent proactive investments anticipating future climate events, or

they might reflect necessary repairs from recent damage. Likewise, rising insurance expenses

could indicate strategic decisions to increase coverage or simply higher premiums after prop-

erties suffer climate-related losses.

Our baseline specification in Equation 2 addresses proactive investor behavior by defin-

ing treatment based on climate shocks experienced at the investors’ main office locations.

To isolate and separately assess reactive spending due to actual building-level events, we

alternatively define Treatmenti,j,g,t and PostShocki,j,g,t based on shocks occurring at the

properties themselves. This distinction enables us to identify investor reactions to climate

belief shocks, separately from direct responses to physical property damage.
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3.4. Climate Risk Adaptation and Expenditures: Existing Properties

The previous analyses (Equations 1 and 2) examine climate adaptation strategies based on

property transactions. However, investors can also adapt to climate risks without trading

properties. Instead, they may maintain existing holdings and invest directly in climate

resilience measures. These investments could include upgrading HVAC systems, installing

flood protection, enhancing insulation, or improving water conservation.

To assess whether portfolios invest in existing properties as an adaptation strategy, we

estimate the following portfolio-level regression:

PortfolioExpenditurej,g,t = β0 + β1(Treatmentj,g,t × PostShockj,g,t)

+ τt + εj,g,t

(3)

The dependent variable, PortfolioExpenditurej,g,t, aggregates expenditures at the port-

folio level. It includes the same expenditure categories analyzed previously: total capital

expenditures, building improvements, and insurance costs. This portfolio-level approach

complements our earlier transaction-based analyses by capturing investor responses that do

not involve altering portfolio composition.

For example, a portfolio exposed to a climate shock might undertake a significant ren-

ovation program to enhance climate resilience across multiple existing properties. Such

investment decisions would significantly increase portfolio-level expenditures but would not

be detected through transaction-based measures like RiskScorei,j,g,t or Expenditurei,j,g,t.

Adaptation through direct investments (“adaptation-in-place”) can be particularly relevant

for portfolios with limited flexibility to buy or sell properties or locations where targeted

resilience upgrades effectively mitigate climate risks.

Considering transaction behavior and investments in existing holdings, we offer a compre-

hensive picture of how institutional investors adjust their portfolios following climate belief

shocks.
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4. Results

4.1. Climate Risk and Portfolio Adaptation

Table 2 presents the estimation results of Equation 1. We find clear evidence that institu-

tional investors adjust their climate risk preferences after experiencing climate information

shocks. These adaptations occur consistently across multiple risk categories, including ag-

gregate climate impact, flood, wildfire, and sea level rise risks.

Column (1) of Table 2 shows that investors choose properties with significantly lower

average climate risk scores after exposure to abnormally high temperatures near investors’

primary offices. Specifically, the estimated coefficient (β1) is -2.389 (SE = 0.18). This reduc-

tion is economically meaningful, representing approximately 8.5% of the sample’s standard

deviation in climate risk scores. Conversely, Column (2) indicates investors also strategi-

cally divest higher-risk properties following these climate shocks, with an average risk score

increase of 1.987 points (7.1% of standard deviation). Together, these results show investors

pursue a deliberate rebalancing strategy, mitigating climate exposure by acquiring safer

properties and disposing of riskier ones.

The adaptation response varies across specific hazard categories. Flood risk shows the

largest magnitude effects, with a substantial decrease of 2.382 points in purchased properties’

risk scores (8% of standard deviation, p<0.01) and an increase of 2.974 points in sold proper-

ties (10% of standard deviation, p<0.01). Wildfire risk follows a similar but less pronounced

pattern, with purchased properties having a reduced risk score of 0.5396 (3.4% of standard

deviation) and sold properties increasing by 0.4347 (2.7% of standard deviation). For sea

level rise, investors primarily respond by selling higher-risk properties (+2.367 points, 13.4%

of standard deviation, p<0.01), with no significant adjustment in purchases.
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All Categories Risk Score Floods Risk Score Sea Level Rise Risk Score Wildfires Risk Score

(1) (2) (3) (4) (5) (6) (7) (8)

Buy Sell Buy Sell Buy Sell Buy Sell

Variables

Treated × Post -2.389∗∗∗ 1.987∗∗∗ -2.382∗∗∗ 2.974∗∗∗ -0.0365 2.367∗∗∗ -0.540∗∗∗ 0.435∗∗∗

(0.1789) (0.2475) (0.2734) (0.3921) (0.1633) (0.1015) (0.1100) (0.1449)

Fixed-effects

Cohort FE Yes Yes Yes Yes Yes Yes Yes Yes

Portfolio FE Yes Yes Yes Yes Yes Yes Yes Yes

Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Observations 259,670 223,992 259,520 223,992 259,670 223,992 259,670 223,992

R2 0.53338 0.53174 0.45587 0.49050 0.46367 0.49578 0.46955 0.55692

Table 2: Climate Risk Adaptation in CRE Portfolio This table shows the treatment effects of climate
risk information shock on properties’ risk scores (higher score = riskier) in buying and selling transactions.
All specifications include cohort, portfolio, and year-quarter fixed effects. Standard errors are clustered at
the portfolio-cohort level.

Analysis of expected financial impacts, measured using the Annualized Damage Rate

(ADR), further supports these findings. Table 3 reports these results. Column (1) shows

that investors purchase properties with significantly lower expected financial damage after

climate shocks. The estimated coefficient is -0.0968 (SE = 0.0066), indicating that purchased

properties have approximately 9.58% lower expected annualized damage rates. Conversely,

Column (2) demonstrates investors sell properties with higher expected damage rates, with

an estimated coefficient of +0.1007 (SE = 0.0128). These results are economically significant,

as even modest percentage changes in ADR translate into considerable financial impacts given

the high asset values typical in commercial real estate markets.
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All Categories Annualized Damage Rate (log)

(1) (2)

Buy Sell

Variables

Treated × Post -0.0958∗∗∗ 0.1007∗∗∗

(0.0066) (0.0128)

Fixed-effects

Cohort FE Yes Yes

Portfolio FE Yes Yes

Year-Quarter FE Yes Yes

Fit statistics

Observations 264,397 228,220

R2 0.52188 0.51588

Within R2 0.00056 0.00144

Table 3: Financial Impact of Climate Risk in CRE Portfolio This table shows the treatment effects of
climate risk information shock on properties’ annualized damage rates (log) in buying and selling transactions.
All specifications include cohort, portfolio, and year-quarter fixed effects. Standard errors are clustered at
the portfolio-cohort level.

These results highlight how institutional CRE investors adjust their portfolios in response

to increased awareness of climate risks. The observed rebalancing strategy reflects nuanced

differences between acute hazards (floods and wildfires) and chronic risks (sea level rise). The

pronounced reaction to flood risk aligns with its widespread and immediate implications for

property values and insurability. The selective divestment pattern observed for sea level

rise suggests that investors prioritize avoiding long-term value erosion in highly exposed

coastal assets. Overall, our findings indicate that climate risk perceptions influence tangible

investment behaviors, potentially accelerating market-wide repricing of climate risk in the

commercial real estate sector.
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4.2. Climate Risk Adaptation and Expenditures

Table 4 presents the estimated DiD effects showing how investors adjust their expenditure

patterns following climate information shocks. Column (1) reports that capital expenditures

on building improvements increase by 102.2% (SE=0.06) relative to the pre-shock period.

This result implies a significant rise in investments aimed at enhancing structural resilience.

Similarly, Column (2) shows total capital expenditure increasing by 39.56% (SE=0.05), in-

dicating broader renovations beyond routine maintenance. Insurance expenditures also in-

crease by 11.51% (SE=0.02), suggesting heightened investor attention to managing climate

risks through insurance coverage. Column (4) shows total expenditures rising by 9.59%

(SE=0.03), confirming an overall systematic increase in property-related spending following

shocks.

CapEx Building Improvement CapEx Total Insurance Expenditure Total Expenditure

(1) (3) (7) (9)

Variables

Treated × Post 1.022∗∗∗ 0.396∗∗∗ 0.115∗∗∗ 0.096∗∗∗

(0.0645) (0.0490) (0.0224) (0.0265)

Fixed-effects

Cohort FE Yes Yes Yes Yes

Owner FE Yes Yes Yes Yes

Year-Quarter FE Yes Yes Yes Yes

Fit statistics

Observations 18,735 26,739 43,184 44,090

R2 0.85895 0.84257 0.78932 0.79181

Within R2 0.06515 0.02659 0.01257 0.00061

Clustered standard-errors in (cohort portfolio)

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 4: Expenditure Changes in Property Acquisitions after Climate Shock This table reports
difference-in-differences estimates of expenditure changes in properties acquired by treatment portfolios after
climate risk information shocks. The dependent variables include building improvement CapEx, total CapEx,
insurance expenditure, and total expenditure. All coefficients represent percentage changes. Standard errors
clustered at the cohort-portfolio level.
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The observed changes in expenditures could reflect two mechanisms: investor preference

(selecting properties with recent investments) or investor intervention (actively enhancing

properties after purchase). To distinguish between these, we analyze expenditures separately

for k quarters before and after transactions, denoted Expenditure
(k)
i,j,g,t.

Table 5 examines capital expenditures on building improvements before and after trans-

actions, excluding the transaction quarter. Two distinct patterns emerge. First, we find

evidence of investor selection. Treated investors tend to purchase properties with recent ex-

penditure increases, especially in the third (61.47%), fourth (49.35%), and second quarters

(18.91%) before the acquisition. However, we observe substantially stronger effects after

acquisition. Post-acquisition expenditures rise significantly across all four quarters, ranging

from 117.5% (first quarter) to 199.7% (fourth quarter). These results indicate that while

treated portfolios somewhat prefer recently improved properties, their main strategy involves

actively investing in resilience upgrades after acquisition.
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CapEx Building Improvement

4Q Before 3Q Before 2Q Before 1Q Before 1Q After 2Q After 3Q After 4Q After

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables

Treated × Post 0.494∗∗∗ 0.615∗∗∗ 0.189∗∗ -0.1129 1.175∗∗∗ 1.406∗∗∗ 1.325∗∗∗ 1.997∗∗∗

(0.0741) (0.0738) (0.0888) (0.1378) (0.0529) (0.1161) (0.0883) (0.1036)

Fixed-effects

Cohort FE Yes Yes Yes Yes Yes Yes Yes Yes

Owner FE Yes Yes Yes Yes Yes Yes Yes Yes

Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Observations 28,850 27,690 29,061 29,809 28,114 25,272 27,050 26,496

R2 0.85227 0.88167 0.90299 0.83416 0.88752 0.88773 0.91154 0.88079

Within R2 0.07281 0.03517 0.02519 0.00743 0.08968 0.08595 0.12113 0.15463

Clustered standard-errors in (cohort portfolio)

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 5: Pre- and Post-acquisition Building Improvement Expenditure This table reports difference-
in-differences estimates of quarterly building improvement CapEx up to 4 quarters before and after property
acquisitions, excluding the transaction quarter. Columns (1)-(4) show selection effects (pre-acquisition),
while columns (5)-(8) show investment effects (post-acquisition). Treatment portfolios are those experiencing
climate risk information shocks. Standard errors clustered at the cohort-portfolio level.

An important consideration is whether these expenditure increases represent proactive

investments or reactive responses to physical damage from climate hazards. To explore this

distinction, we conduct a separate DiD analysis at the building level, evaluating expenditures

directly after climate hazards impact properties.

Table 6 presents these building-level results. Surprisingly, building improvement expen-

ditures decrease by 30%
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CapEx Building Improvement Insurance Expenditure

1Q-4Q Total. 1Q After 1Q-4Q Total. 1Q After

(1) (2) (3) (4)

Variables

Treated × Post 0.2120∗∗∗ -0.2994∗∗∗ -0.1860∗∗∗ -0.1421∗∗∗

(0.0267) (0.0299) (0.0063) (0.0108)

Fixed-effects

Cohort FE Yes Yes Yes Yes

Owner FE Yes Yes Yes Yes

Year-Quarter FE Yes Yes Yes Yes

Fit statistics

Observations 143,950 232,958 310,424 337,107

R2 0.99414 0.96561 0.96466 0.96313

Within R2 0.10964 0.01755 0.00906 0.17432

Clustered standard-errors in (cohort portfolio)

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 6: Expenditure Change: Effect of Building-level Hazards This table reports difference-in-
differences estimates for building improvement and insurance expenditures as the impact of climate hazards
on buildings, instead of investors (as in Table 4 and 5). Column (1) and (3) shows the effect on aggregated
expenditures of 4 quarters after impact; column (2) and (4) for expenditures during the first quarter after
impact. Coefficients represent percentage changes; standard errors are clustered at the cohort-portfolio level.

4.3. Climate Risk Adaptation in Existing Portfolios

Table 7 shows the effect of climate information shocks on portfolio-level expenditures for

existing properties. The results show significant expenditure increases for treated portfo-

lios. Specifically, capital expenditures on building improvements rise by 9.18%, and insur-

ance expenditures increase by 14.53%. These findings highlight a comprehensive adaptation

strategy. Portfolios do not merely adjust their property transactions. Instead, they actively
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invest in climate resilience upgrades within their existing property holdings. The observed

spending increases likely reflect deliberate, strategic enhancements to mitigate future climate

risks.

Portfolio Aggregated Expenditures

CapEx Building Improvement CapEx Total Insurance Expenditure

Model: (1) (2) (3)

Variables

Treated × Post 0.0918∗∗∗ -0.0125 0.1453∗∗∗

(0.0199) (0.0115) (0.0076)

Fixed-effects

Cohort FE Yes Yes Yes

Owner FE Yes Yes Yes

Fit statistics

Observations 81,754 86,197 90,539

R2 0.89083 0.93731 0.98031

Within R2 0.00130 0.00237 0.03446

Clustered standard-errors in (cohort portfolio)

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 7: Portfolio-level Expenditure Changes After Climate Shock: This table reports difference-
in-differences estimates of expenditure changes for existing properties in treatment portfolios, excluding
properties within ±4 quarters of any transaction. The results show changes in building improvement CapEx,
total CapEx, and insurance expenditure. All coefficients represent percentage changes. Standard errors
clustered at the cohort-portfolio level.

5. Conclusion

This paper provides robust evidence on how institutional real estate investors adjust their

portfolios in response to localized climate information shocks, such as extreme heat events.

We document two primary adaptation strategies by exploiting these events as quasi-exogenous
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shocks. First, investors actively rebalance their portfolios toward properties with lower cli-

mate risk exposure. Second, they significantly increase capital expenditures on building

improvements and insurance coverage, exceeding typical market behavior. These findings

demonstrate that institutional investors recognize and proactively integrate climate risks

into their investment decisions. Our results offer critical insights for policymakers, regu-

lators, and industry practitioners aiming to enhance climate resilience in commercial real

estate, a sector pivotal for economic stability and societal well-being.
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Appendix

Appendix A. Moody’s Climate Data

Appendix A.1. Risk modeling methodology

Our research uses data from RMS’s hazard risk scoring systems to assess climate-related

perils.8 These systems utilize outputs from leading publicly available climate models, such

as the North American CORDEX program (NA-CORDEX) and the World Climate Research

Program’s Coupled Model Intercomparison Project Phases 5 and 6 (CMIP5 and CMIP6).

For specific perils, RMS generates scores across various locations using relative rankings.

RMS assigns each asset a score for each peril within a portfolio, which they then aggregate

to provide an overall risk assessment. While these systems offer valuable insights, they have

notable limitations. Climate model outputs alone are insufficient for creating high-resolution,

empirically validated, multivariate hazard distributions. Factors such as parameterized sub-

grid scale processes inherent to all climate models, computational constraints, and model

inaccuracies necessitate additional tools to ensure accurate and well-validated estimates of

the full multivariate hazard distribution, including extreme events like hurricanes and wild-

fires. Moreover, hazard-based systems primarily provide comparative analyses of climate

change effects across locations but fall short in quantifying damages and costs essential for

assessing credit, investment, and insurance risks. They also struggle to facilitate risk com-

parisons across different perils or to aggregate risk metrics comprehensively. Consequently,

evaluating the financial impact and quantifying physical climate risk are critical next steps

for effective climate change risk assessment, mitigation, adaptation, management, and dis-

closure. We utilize advanced solutions like Moody’s Climate on Demand Pro to address these

challenges. This platform provides detailed hazard and financial impact metrics, enabling us

to assess climate risk across various perils and asset types. Offering expected damage and

impact scores on a scale from 0 to 100 allows for quick comparisons between assets and port-

folios, categorizing locations into different risk zones. The platform delivers expected damage

and impact scores for five lines of business: commercial, industrial, single-family dwelling,

8See www.rms.com. for more details.
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multi-family dwelling, and unknown. These lines of business are mapped from user inputs

for the asset’s activity, using the activity types already established in Climate on Demand.

RMS then uses the subset of non-zero risk metrics to form a benchmark against which the

risk metric computed for the location of interest can be compared. For example, if the risk

metric computed for a location lies at the 75th percentile of the benchmark set of results,

then an impact score of 75 is assigned to that location. The impact score for a portfolio is

evaluated in a similar manner using the results from a representative sample of corporations

and their locations drawn from Moody’s proprietary corporate facility database to define

the peril benchmarks. In contrast, RMS employs a comprehensive approach by simulating

extensive catalogs of potential events, representing up to a million simulated years, depend-

ing on the frequency-severity distribution of the peril. They characterize each event by its

location or path, intensity, evolution, and probability of occurrence. These simulations are

grounded in scientific principles, historical data, and climate and numerical weather models.

For instance, the hurricane model calculates the strength of the winds around a storm, the

amount of rainfall and flooding, and the storm surge impact, considering the region’s terrain

and built environment and its proximity to the coast. RMS assesses the degree to which

structures and their contents are likely damaged by the hazard severity experienced in an

event that affects a location. Different assets (residential buildings, commercial properties,

large industrial facilities) experience different damage from the same hazard. To gauge these

differences, vulnerability curves reflect variations in building codes, building characteristics,

construction type, age, and building quality across regions and between countries. Similarly,

business interruption losses depend on the type of occupancy of the building and the per-

formance of critical lifelines (e.g., electricity and water supply) servicing the building or the

broader area. RMS also translates physical damage into monetary terms, such as the costs

of repair and reconstruction, damage to contents and equipment, alternative living expenses,

and business interruption and loss of income. RMS’s damage modeling includes the effect

of inflation in repair and materials costs due to the surge in demand following major catas-

trophes, the impact of rebuilding older properties to higher modern-day building standards

and codes, and the consequences of infrastructure damage such as roads, bridges, and power

networks on business interruption. Moreover, the insured loss component can be estimated
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utilizing Moody’s RMS advanced insurance modeling engine. However, the damages and

impact scores expressed in Climate on Demand Pro reflect the total damage, excluding con-

sideration of insurance policy terms and coverages. Moody’s RMS solutions have historically

focused on key peril regions for acute perils (e.g., hurricanes, floods, wildfires) in developed

markets and economies. Since 2021, Moody’s RMS has released climate change-conditioned

versions of natural catastrophe models across North America, Europe, and Japan, enabling

various stakeholders to project risk profiles under different climate change scenarios. By in-

tegrating such advanced analytics, we can better quantify and manage the financial impacts

of climate risks, leading to more informed decision-making and enhanced resilience against

future climate-related challenges.

Risk Type No Risk Low Risk Medium Risk High Risk Red Flag

Floods 0: No risk 0-27: Not
susceptible,
future rain-
fall increase
likely

28-49: Some
susceptibility

50-74: Sus-
ceptible to
floods

≥75:
High fre-
quency/severe
flooding

Heat Stress 0: No risk 0-32: Minor
warming

33-65: Average
warming

66-94:
Above
average

≥95: Severe
changes

Hurricanes 0-24: No
history

25-61: Mini-
mal activity

62-87: Frequent
activity

88-95: Regu-
lar path

≥96: Reg-
ular severe
storms

Sea Level 0-4: Not
coastal

5-45:
Coastal,
low risk

46-59: Possible
flooding

60-69: Some
flooding

≥70: High
flood risk

Water
Stress

0: No risk 0-32: Minor
changes

33-65: Increas-
ing competition

66-94: High
stress

≥95: Ex-
treme stress

Wildfires 0: Not
burnable

1-46: Low
potential

47-73: Moder-
ate risk

74-96: High
potential

≥97: Very
high risk

Note: Risk scores range from 0 (no risk) to 100 (highest risk). Source: Moody’s.

Table A.8: Climate Risk Categories and Severity Levels

Appendix A.1.1. Validation

Moody’s RMS employs a rigorous, multi-layered validation process to ensure the reliabil-

ity of its models. Throughout model development, both internal and external experts inde-

pendently assess methodologies and outputs. The validation framework operates at two key
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levels: (1) Component validation, which systematically tests individual modules—including

stochastic event generation, hazard modeling, vulnerability assessment, and financial loss

estimation—to confirm their accuracy and robustness; and (2) Overall model validation,

which evaluates the combined outputs of these modules to ensure they produce realistic and

reliable damage estimates.

For the validation of stochastic event modules across different peril models, RMS uti-

lizes historically recognized datasets widely accepted in the scientific community, such as

the HURDAT2 hurricane database. In cases where publicly available historical data is in-

complete or insufficient, RMS collaborates with local and global scientific institutions to

construct proprietary historical catalogs, sometimes supplementing existing records or de-

veloping entirely new datasets in data-sparse regions. As more historical records become

available—whether through new catastrophic events, advancements in scientific research

(e.g., sediment core analysis for long-term earthquake activity), or the release of previously

restricted datasets—RMS continuously integrates these updates to refine and improve its

models.
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