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Abstract

This paper studies how improvements in local accessibility influence cities’ distribu-
tions of economic activity. Exploiting UberX’s entry interacted with a location’s prior
accessibility, I measure how local economic activity responds to changes in access.
After ridesharing’s entry, restaurant net creation doubles in previously inaccessible lo-
cations, from 5% to 10%. As these areas open up and become more attractive, the
median house price rises by 4% and rents rise by 1%. I quantify the impacts of these
changes on welfare using a spatial equilibrium framework. Resident welfare depends
on the trade-off between accessibility and amenity benefits versus housing costs. In
the post-period, all residents benefit from ridesharing’s entry. Homeowners are willing
to pay $1,060 per year for ridesharing’s entry, as user costs fall. Renters are willing to
pay $430, as they do not realize capital gains.
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1 Introduction

Transportation technology effects the spatial distribution of economic activity in cities.

Knowing this, governments have spent hundreds of billions of public dollars investing in

large infrastructure projects. As a result, highways, commuter rail, and subways have al-

lowed cities to expand their spatial footprints, allocating more land to production in the

center and residences in the suburbs. The goal of these projects is often to improve accessi-

bility in cities. Recently, the private sector introduced a new transportation technology, in

the form of ridesharing, that has the potential to reshape our cities.

This paper looks at how ridesharing impacts cities. Ridesharing services such as Uber

and Lyft provide on-demand, point-to-point travel, and have the potential to reshape our

cities by improving accessibility. Ridesharing services remove the fixed cost of owning a car,

allow more flexible routes than public transit, and expand taxi services by hailing via online

platform rather than physically searching for a ride. In contrast to changes in access due

to large infrastructure projects, ridesharing arrives without planning or prior announcement

from public officials. In addition, it arrives in every location within a city, instead of a along

single new route. This variation affords clean, short-run estimation of the impact of access

on economic activity.

In this paper, I explore how residents value this improvement in access introduced via

ridesharing. As zipcodes become more accessible, customers can travel to them more easily.

This enables firms to take advantage of lower rents in previously inaccessible areas, especially

those firms sensitive to consumers’ travel choices, such as restaurants, which are important

urban consumption amenities. The improvements in access and amenities beg the ques-

tion of whether more fundamental neighborhood changes, such as gentrification, are afoot.

While the short run demographic responses show no evidence of displacement or residential

resorting, transit-inaccessible zipcodes already see house price growth consistent with local

redevelopment.

First, to measure UberX’s impact on cities, I compare economic outcomes in accessible

and inaccessible zipcodes within cities, pre- and post-ridesharing. I use variation in pre-

period inaccessibility, which differs within cities and across zipcodes, interacted with the
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staggered entry of the UberX platform into cities in a difference-in-differences design.1 This

natural experiment measures how economic activity, specifically restaurants and housing

costs, responds to differential improvements in access induced by ridesharing. The design is

also expanded to an event-study setting to observe how these responses evolve over time.

The reduced-form results show that economic activity, as measured by restaurant net

creation, house prices, and rents, increases relatively more in inaccessible zipcodes than in

their accessible peers. After ridesharing’s entry into a city, inaccessible zipcodes add 0.75

new restaurants per year more than their accessible peers. This doubles the restaurant net

creation rate from 5% of stock in the pre-period to 10% in the post-period; suggesting the

supply of local consumption amenities are highly elastic with respect to access. As previously

inaccessible zipcodes enjoy improved access and new amenities, house prices rise by 4% and

rents by 1% for the median zipcode. These results show no evidence of pre-trends, are

not driven by general urbanization or gentrification, and are robust to a variety of sample

definitions and inaccessibility metrics.

Second, to measure how residents value improvements in access, I write down a model

for welfare in order. The spatial equilibrium model contains a demand system in which res-

idents choose how much and where to consume private amenities (restaurants). The UberX

natural experiment shocks travel times and costs. Resident utility increases as their zip-

code of residence gains access and amenities, but declines as it realizes higher housing costs.

This framework allows me to weigh travel times, amenities, and housing costs in a unified

framework to estimate how the distribution of welfare changes over time by accessibility

status.

After ridesharing, all residents gain more from improvements in access and amenities

than they lose due to increasing housing costs. Homeowners actually see their user costs

fall, and are willing to pay $1,060 for ridesharing’s entry. Renters realize higher rents and

do not benefit as much; they are nonetheless willing to pay $430 a year, or $36 a month

for ridesharing and all of its associated benefits. Residents of accessible locations, both

homeowners and renters, are willing to pay 0.5% more than their inaccessible peers. For
1UberX is a mobile app-based ridesharing platform in which a person can hail a vehicle via the app to come
to their location.
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homeowners, this is because they realize higher capital gains; even with lower house price

growth, prices are initially more expensive in accessible locations. Renters in accessible

locations are better off than their inaccessible peers as their rents do not rise as quickly.

Because this paper provides evidence that a short-run innovation in transportation tech-

nology can reshape cities without the need for major infrastructure projects, it complements

the literature on access and economic activity. Generally, this literature finds that lowering

transit costs leads to urban growth and decentralization. Reduced-form work showing that

changes in access lead to dispersion of economic activity began with Baum-Snow (2007),

who showed that highways lead to suburbanization. More recent work on transportation has

exploited innovations independent of infrastructure, to measure the impact of taxi dereg-

ulation on congestion (Mangrum and Molnar, 2019), and the impact of congestion pricing

on travel patterns (Kreindler, 2018). Bridging those two strains, the reduced-form section

of this paper utilizes a modern change in technology independent of infrastructure to mea-

sure the impact of a transportation change on economic activity, rather than on travel or

congestion.

The welfare section of the paper complements the empirical spatial equilibrium litera-

ture, which has traditionally used long-term variation in access from infrastructure changes

(Heblich, Redding and Sturm, 2019; Monte et al., 2018; Tsivanidis, 2019). I adapt the

demand structure introduced by Ahlfeldt et al. (2015), part of the empirical spatial equi-

librium framework that brought theory on non-monocentric cities (Ogawa and Fujita, 1976;

Rossi-Hansburg and Lucas, 2002), to a tractable empirical model. I modify the framework

for the short-run setting, shutting down the labor supply response and introducing demand

for consumption amenities to the consumer’s problem.

In studying how innovations in transportation impact the distribution of consumption,

this paper integrates the urban consumption literature and the access literature, which em-

phasizes the distributions of jobs and residences. Glaeser, Kolko and Saiz (2000) posit that

cities add value not only in production, but also in consumption. Cities provide access to

nontradable services such as lawyers or restaurants, which increasingly drive urbanization

(Couture and Handbury, 2017). In addition, consumers value consumption density (Cou-

ture (2019)) and segregate their consumption based on spatial and social frictions (Davis
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et al., 2017). These papers rely on holding the commercial and transportation landscape

fixed, allowing people to sort and move across the city’s geography. In contrast, this paper

uses a complementary form of variation; I shock travel times, changing the distribution of

amenities, while holding residents fixed.

Finally, this paper joins a growing literature examining the Uber economy. Researchers

have studied consumer welfare (Cohen et al., 2016), and the labor supply of Uber drivers

(Chen et al., 2017; Hall and Krueger, 2016; Cook et al., 2018). In response to Uber’s

arrival, ambulance use has fallen (Moskatel and Slutsky, 2017), but traffic fatalities are on

the rise (Barrios, Hochberg and Yi, 2018). Hall, Palsson and Price (2018) show that Uber

can be a substitute or complement to a city’s transportation network, depending on its

extent. My paper furthers this finding; since Uber can substitute or complement current

travel modes, residents have more travel flexibility and consume in new places, leading to

aggregate increases in resident welfare.

2 Institutional Background and Data

Before exploring how ridesharing redistributes economics activity in cities, it is useful to

understand how travel has changed since its introduction. This section uses travel survey

data from the National Household Travel Survey to show that the share of trips taken by taxis

or ridesharing is five times higher than in a world with only taxis. Furthermore, travel modes

have become increasingly specialized; residents switch from public transit to ridesharing for

social and recreational trips, and prefer public transit for work-related trips. Zooming in on

New York City, which offers extensive trip-level data over many years, shows that take-up

of ridesharing services in the outer boroughs is strongly correlated with increased restaurant

growth and housing rents.

Taken together, the travel data support studying how restaurant net creation has changed

in transit-inaccessible locations, as people switch from transit to ridesharing to consume.

Moving from the NYC case study to the national sample requires data pre- and post-

ridesharing in accessible and inaccessible locations for house prices, rents, and restaurant

establishment counts for a set of U.S. cities.
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2.1 Travel Patterns and the Introduction of Ridesharing

While the United States is often considered primarily a driving country, U.S. travelers have

a variety of travel options. The National Household Travel Survey (NHTS) provides

detailed trip descriptions for approximately 1 million trips every 8 years, with the most recent

surveys in 2009 and 2017. Limiting the sample to trips taken in Core Based statistical areas

(CBSAs) with at least 2 million residents in 2010 yields approximately 291k trips in 2009,

and 282k trips in 2017. Analysis of the two recent NHTS waves gives us insight into how

ridesharing is changing travel patterns in our biggest cities.

The NHTS classifies trips for work, social and recreational activities, shopping and other.2

I define travel mode as driving private vehicle, taking public transit (including buses, sub-

ways, commuter rail, street car, light rail), or hailing a taxi. In 2009, all taxi trips can

only be taken using the traditional taxi services, those one hails on the street or requests

by calling the dispatch station. In 2017, this field was updated to include Uber and Lyft.

Using the confidential NHTS data releases, one can determine whether a respondent’s home

is within a 5 mile radius of the CBSA’s city center.3

From 2009 to 2017, more people travel to work with public transit, but travel for fun

with ridesharing. Both public transit and ridesharing has increased at the expense of private

vehicles, and this is especially true in city centers. Table 1 describes the transportation

options observed in the NHTS trip data for 2009 and 2017. In 2009, 95% of travel used

private cars, decreasing to 83% in city centers. In city centers, this declined to 71% after

the introduction of ridesharing. Over the same period, people traveling to work rode more

with public transit, increasing from 25% to 39% of trips from central origins.4 For social and

recreational trips, travelers switched from driving private cars, especially so in city centers,

to using ridehailing, with these services growing from 2–10% of social and recreational trips.

Taken together, Table 2 and Figure 1 suggest travelers enjoy taking social and recreational

trips via ridesharing. Driving trips prior to ridesharing see about one-fifth of trips devoted
2Analysis uses the “trippurp” variable. The more specific trip purpose variable, “whyto”, which gives the
travel purpose for a destination, independent of origin, changed the response options across the two waves,
introducing error when tracking travel purposes over time.

3City centers are defined by querying the latitude and longitude of a city in Google Maps.
429/34 US. cities with at least 2 million people have subways or lightrail systems, as listed in Table E1.
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both to work and to social and recreational activities. In central locations after ridesharing,

driving trips are increasingly work-related. Public transit seems to have become especially

work-related, with the work share growing from 36% in 2009 to 50% in 2017. The share of

transit trips taken for fun has declined, especially so in city centers, from 24% to 14%. As

driving and transit became more specialized for work trips, ridesharing trips have become

increasingly socially driven; social trip shares for taxi/ridesharing trips increase from 13%

to 46%. This revealed preference for ridesharing is not limited to areas with previous taxi

experience. Looking to Figure 1, we see that the cities best served by public transit see a

growth in centrally originated social trips using taxi or ridesharing services, from 5% to 17%,

but also cities without as much transit reliance saw growth from 0.1% to 3%. These are also

cities in which ridesharing entered later, so their take-up is in earlier stages.5

2.2 Case Study of the Impacts of Ridesharing: New York City

Not only did ridesharing introduce taxi services to cities lacking them in the pre-period, it

also filled in gaps within even the best-served public transit and taxi city, New York City.

While the yellow cab is one of the most recognizable symbols of the city, it is far from

omnipresent outside of Manhattan. Poorer and minority areas have long had trouble hailing

yellow cabs, to the extent that the city introduced green cabs in 2013 to provide more options

to outer borough residents.6 These areas are also much less densely served by the subway

systems, making them overall harder to access and leave using public transit.

Using a combination of publicly available data from the NYC Taxi & Limousine

Commission (TLC) as well as data acquired by Bialik, Flowers, Fischer-Baum and Mehta

of the website FiveThirtyEight using a Freedom of Information Act (FOIA) request, one can

construct the time series of trip origination locations by car travel mode: yellow cab, green

cab, and Uber.789 UberX entered NYC in September, 2012, Lyft entered in July, 2014, and
5Of the sample of the 34 largest U.S. CBSA’s in 2010, San Francisco, New York City, Boston, Chicago, and
Washington, DC represent, respectively, the first, second, third, fourth, and eight city-level UberX entry
dates.

6Green cabs can pick up riders in the Bronx, Brooklyn, Queens and Staten Island, as well as in Manhattan
above W 110th St. and E 96th St.

7Data available at http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
8Data available at https://github.com/fivethirtyeight/uber-tlc-foil-response/
9I drop trips to or from the major airports as we are interested in how ridesharing impacts social and
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UberPOOL, Uber’s carpooling service, entered in January 2015. The FOAI’d data covers all

Uber trips in NYC from April to September 2014, and from January to June 2015. Figure 2

shows how the take-up in ridesharing differs by borough. Panel (a) plots the Uber share of

all pickups, by borough. Uber makes up a much greater share of the ridesharing market in

outer boroughs, growing from 5 to nearly 40% of all trips by mid-2015. In contrast, Uber’s

market share in Manhattan grows at half the rate, still below 20% by mid-2015. Over the

sample period, the total number of trips taken by any ridehailing service (yellow cab, green

cab or Uber) in Manhattan fell by about 3%, while the number of trips originated in the

outer boroughs rose by 69%, reflecting the differential improvement in access induced by

ridesharing.

The NHTS data suggest many of these trips to outer boroughs may be to restaurants.

Restaurants represent a particularly useful industry to study for two key reasons. First,

restaurant contribute to the consumption value we derive from cities (Glaeser, Kolko, Saiz,

2000; Couture, 2018; Couture and Handbury, 2019; Davis et al., 2019). Second, due to their

low start up costs, restaurants respond to changing local demand quickly, representing the

green shoots of responsiveness to ridesharing. In 2017, the NHTS data show that trips to

consume meals comprised 8% of all trips, and 54% of all social and recreational trips, up

from 6% of trips in 2009 and 34% of all social and recreational trips. Given that we travel

to restaurants often, explore a wide variety of restaurant cuisines, and start up costs are

low relative to other industries, we would expect new restaurants to open up in locations

previously hard to access using public transit.

The County Business Patterns provides zipcode level annual data on restaurants,

among other industries. This data tracks the number of establishments by industry and

employment size class.10 After ridesharing’s entry, we should observe more restaurants enter

in previously hard-to-reach areas, so I construct a net creation variable as the change in the

stock of restaurants over two years. For example, given a restaurant stock of 8 establishments

in 2011, followed by 10 establishments in 2012, net creation equals 2 establishments. Because

recreational trips.
10I use data on full-service restaurants (NAICS code 722511) with between 10 and 100 employees. This
ensures that I track destination-worthy restaurants, and not fast-casual establishments catering to work
lunches, or coffee shops co-located with residences.
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the data contains only count by zipcode, establishment size, industry and year, I am agnostic

as to whether these establishments have relocated, newly opened, recently closed, grown or

shrunk. Data is also collected for two placebo industries that should be less impacted by

ridesharing. First, dentists, which represent a service we travel to. Second, dry cleaners,

a service we consume close to home, which may move with gentrification. In both placebo

industries, we have a low taste for variety, and so changes in travel options are less likely to

induce us to explore new dry cleaners or restaurants.

Panel (b) in Figure 2 provides a quick check that net creation increases in inaccessible

areas, and plots the growth in restaurants establishments in NYC by borough, using data

from the County Business Patterns (6-digit NAICS 722511). Between UberX’s entry in 2012

and the end of 2016, the outer boroughs increased their stock of restaurants by 70%, while

Manhattan only increased its stock by 20%.

As the outer boroughs become more accessible and gain new restaurants, they become

more desirable. To track how house prices and rents respond to ridesharing, I collect data on

both. House price data comes from the CoreLogic Deeds Database, from 2000q1-2015q4.

I construct zipcode level house price indices, normalized to 1 in 2000q1. Because of the

potential for renovations associated with urbanization and gentrification over the sample

period, I construct a hedonic index rather than a repeat-sales index. This method directly

controls for a suite of housing characteristics. For each zipcode j, I construct the HPIjt
using the following specification:

ln(Pkt) = HPIjtqtrt + δAcreskt + γSqftkt +Builtkt +Bedkt +Bathkt +Garagekt + ηkt (1)

The hedonic specification regresses transaction k’s log price, ln(Pkt), in zipcode j in quarter

t, on quarter dummies, qtrt, the number of acres and square feet in the home, and dummies

for the year built, number of bedrooms, number of bathrooms, and whether the house has a

garage. The estimates for HPIjt provide the local house price index in zipcode j at time t.

This yields a zipcode by quarter panel of house price indices.

Housing rent data comes from Zillow’s Zillow Rent Index (ZRI) data for all homes,

including single family, multifamily, condos and co-ops, at the zipcode level from 2010m1

through 2018m5. The ZRI provides an estimate of median market rent for each zipcode,
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smoothed and seasonally adjusted, denominated in dollars. Zillow does not reveal its propri-

etary index construction method. Figure 2(c) shows that ZRI, normalized to 1 in 2010m10,

in the outer boroughs have grown 10% more than rents in Manhattan from the end of 2010

to 2018, during the expansion of ridesharing.

2.3 Moving from NYC to a National Set of Cities

Taken together, the NHTS and TLC data show that residents opt for ridesharing instead

of public transit for social and recreational trips, and especially so in the boroughs of New

York City least accessible via public transit. The CBP and ZRI data show that restaurants

and rents have grown as the outer boroughs opened up due to ridesharing. Moving from the

NYC case study to a national sample of 34 cities (those with at least 2 million residents in

2010) requires additional data on local accessibility. The inner/outer borough comparison

is unique to New York City; not all cities have such intuitive cross-sectional variation in

access. In Section 3, I develop a metric for a destination’s accessibility, constructed from

travel times and local population data.

Travel Times, my preferred proxy for the cost of travel, come from scraping the Google

Maps Distance Matrix API, which provides travel duration for a variety of travel modes,

given the latitude and longitude of the origin and destination. There are 7,276 zipcodes in

the set of 34 CBSAs. I construct a travel matrix allowing travel between any two zipcodes

within the same CBSA. This yields 2.4 million zipcode origin-destination pairs, or trips.

To cut down on data costs, I assume travel times to be symmetric; mij = mji, where mij

denotes travel time in minutes from origin i to destination j. Google provides average travel

times, independent of traffic conditions, for driving and public transit modes.11 Taking the

difference between these two times yields the travel time wedge for a given trip ij. Finally, I

also construct the geodesic distance between any two zipcodes for an infrastructure-invariant

travel cost.

Population data comes from the American Community Survey (2011–2016) and the
11In ongoing work, I query Google Maps’s website directly, and specify the departure time for each query.
This allows me to pull real-time driving and public transit times, depending on time of day and day of
week. This data contain ≈ 20 million queries, as a single trip is scraped multiple times.
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2010 Census. I collect data on zipcode level population for use in constructing the accessi-

bility metrics. I also collect data on median earnings and education. These data are used

to control for time-varying demographic characteristics as well to test for residential sorting

and gentrification around the introduction of ridesharing.

Additionally, the County Business Patterns, National Household Travel Survey, CoreL-

ogic Deeds constructed HPI, and Zillow Rent index are collected for all zipcodes in the set

of 34 cities.

3 Reduced-Form Research Design

3.1 Guiding Empirics with Model Intuition

I define an empirically tractable inaccessibility measure to provide cross-sectional variation

across neighborhoods within cities. This measure is guided by theory laid out formally in

Section 5. Here, I provide intuition linking the theory to the reduced-form inaccessibility

measure, as well as two hypotheses testable in the data. The model yields expressions for

the number of nontradable amenities (hereafter called “firms”) in destination j, Nj, as well

as the number of residents in origin i, Ri:

Nj =
∑
i

ρNij ×Ri × Ii (2)

Ri =
∑
j

ρRij ×Nj (3)

Where ρNij is the probability of traveling between i and j, a measure of firms’ access to

residents; and ρRij is the probability of traveling between i and j, a measure of residents’

access to firms. Equations 2 and 3 highlight that in equilibrium, residents wish to be close

to amenities, and amenities wish to be close to residents.

These formulae yield two hypotheses we can test in the data. First, holding resident

population and income (Ri × Ii) fixed, an increase in firms’ access to residents, ρNij , will

increase the number of firms in destination j. The second hypothesis uses the fact that we

can take the value of residential housing costs, qi, out from the summation as follows:
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Ri =
1
qεβi

∑
j

ρ̂Rij ×Nj (4)

where ρ̂Rij is the remaining components of ρRij that remain in the summation. Equation 4 shows

that, all else equal, in an environment where number of residents is fixed, an improvement in

access to firms (ρ̂Rij) or a growth in the number of firms nearby (Nj), must be counterbalanced

by rising housing costs. In short, there’s no free lunch: one pays for restaurant access with

higher rents.

3.2 An Empirical Definition of Inaccessibility

While the model used in Section 5 measures accessibility using data on times, incomes,

housing costs, and population, as well as unobserved parameters and location characteristics,

for the reduced-form estimation, the paper relies on a simpler metric. We can construct an

empirically tractable market access metric in terms of observables: travel time, mij, the

number residents, Ri, and the number of firms, Nj.

To provide cross-sectional variation in access to residents, I develop an index, mN
j , that

ranks zipcodes within each U.S. city by their population-weighted average travel time, in

minutes. I do this for each travel metric discussed in section 2.3: public transit time, driving

time, the wedge between times, and geodesic distance. Because the NHTS data suggests

that residents in city centers switch from taking public transit in favor of ridesharing for

social and recreational trips, for the main results, I let travel time equal public transit time.

In additional analysis, I discuss other travel time options.

Figure 3 provides a visual example of how this index is constructed for various destination

zipcodes within a city. In the example, zipcode A is the largest and closest to zipcodes B and

C. Tij denotes travel time between i and j. Pi denotes population in the origin zipcode. The

populated-weighted average travel time to A is defined as T̂A = TBA × PB
PB+PC+PD + TCA ×

PC
PB+PC+PD + TDA × PD

PB+PC+PD = 6.52, and to zipcode D as T̂D = TBD × PB
PA+PB+PC + TCD ×

PC
PA+PB+PC + TAD × PA

PA+PB+PC = 10.39. Zipcode A is quicker to reach than zipcode D for the

average city resident.

Intuitively, the index measures a destination zipcode’s access to its potential customer
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base. To construct the general index, I collapse the two-dimensional travel matrix discussed

in Section 2.3 (the square matrix of origin-destination pairs ij with times mij in minutes)

to a 1-dimensional index for the destination zipcodes, j. The collapse proceeds as follows.

The sample is limited to destination zipcodes within 5 miles of a city’s center, as defined

by a Google search for “[City X] latitude and longitude”. For each destination zipcode,

average travel times, mN
j , are calculated from all possible origin zipcodes within 5 miles

of the destination zipcode (potentially 10 miles from the city center), called the set SN ,

weighted by the origin zipcode’s population:

mN
j =

∑
i∈SN

Ri ×mij (5)

Equation 6 shows the analogue from the residents’ perspective. It measures residents’

access to firms, mR
i , by constructing the firm-weighted average public transit time within a

5 mile radius of origin i.

mR
i =

∑
j∈SR

Nj ×mij (6)

Once I have two continuous measures of firm and resident accessibility, mN
j and mR

i , I

split the sample of zipcodes within each city into firm and resident accessible and inaccessible

locations, summarized in Equations 7 and 8. Firm-inaccessible zipcodes are those for which

mN
j is longer than the median time it takes to get to a restaurant in 2010, m̄N . For example,

if residents can reach 50% of the restaurants in 20 minutes, a zipcode taking the average

resident 30 minutes to reach is restaurant-inaccessible. Resident-inaccessible zipcodes are

those for which mR
i is longer than the time it takes to get home from a restaurant for

the median resident, m̄R. If half of residents can get home from restaurants within 20

minutes, a zipcode whose average travel time home from a restaurant is 30 minutes is resident-

inaccessible.

InaccessNj ≡ 1{mN
j > m̄N} (7)

InaccessRi ≡ 1{mR
i > m̄R} (8)
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Since these metrics depend on a city’s public transit infrastructure, where residents live,

and where firms exist in the pre-period, the cutoff for inaccessibility varies by city. Figure

4 shows how m̄N varies for two cities in particular, Philadelphia and Houston. It takes the

average Philadelphia resident m̄N ≈ 35 minutes to travel to half of the city’s restaurants,

while in Houston the average Houstonian travels closer to 37 minutes to cover half of Hous-

ton’s restaurants. This yields 6 accessible and 16 inaccessible zipcodes for Philadelphia, and

8 accessible and 10 inaccessible zipcodes for Houston within 5 miles of the cities’ centers,

anchored to the distribution of firms and residents prior to the introduction of ridesharing.

3.3 Defining the Post-Period using UberX Entry

After ridesharing, we expect inaccessible locations to gain relatively more from their im-

provement in access than areas previously easy to reach via public transit. As inaccessibility

varies by city, so does ridesharing’s entry, with each city having its own entry date, Entryc.

Temporal variation uses the staggered entry of UberX into into different cities, Postt:

Postt = 1{t > Entryc} (9)

Table 3 provides a list of the sample cities and their UberX entry year. For each of the 34

U.S. cities with at least 2 million residents in 2010, I search for UberX’s entry date. Often

times, Uber had a blog post announcing “[City X], your Uber is arriving now,” though this

was less common for earlier entries. When Uber did not provide the entry date itself, local

news outlets provided the entry dates.

Temporal variation uses UberX as opposed to UberBlack, which entered first, as UberBlack

relied on existing black car services and cost much more than UberX, as in Hall, Palsson and

Price (2018). This meant it did not markedly expand ride-hailing quantities, and catered to

those willing to pay higher fares. In addition, the paper uses Uber’s entry dates instead of

Lyft, or another ridesharing platform, as Uber has about 70% of the ridesharing market as

of mid-2018 and was the first platform on the scene in most cities.12

Figure 5 shows both the temporal and geographic variation in entry. The map shows

that UberX entered a variety of cities each year after 2012, without much evidence of gravity
12https://www.recode.net/2018/12/12/18134882/lyft-uber-ride-car-market-share
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between cities. For example, entry did not jump from NYC to Philadelphia, entering in

Dallas and Minneapolis in the meantime. This implies it would be difficult for residents and

firms of a given city to predict entry based on their geographic peers.

3.4 Differences-in-Differences Design

In order to measure the costs and benefits associated with ridesharing’s entry, we can study

inaccessible and accessible locations within cities before and after UberX entry. Formally, I

track restaurant net creation, house prices and rents over time in a differences-in-differences

framework, as in Equation 10.

Yjt = βInaccessNj × Postt + yeart + zipj + CBSAj × Postt + εjt (10)

The main analysis uses Yjt as the net creation of establishments of a given industry

in a zipcode: ∆#(restaurantsjt). For example, if zipcode j had 10 restaurants in 2010,

and 12 restaurants in 2011, ∆#(restaurantsj,2011) = 2. Additional analysis sets Yjt as the

house price index or Zillow Rent Index normalized to the rent in the entry year. j indexes

zipcodes, and t indexes years. The coefficient of interest, β, measures the differential impact

that UberX’s entry has on Yjt in the inaccessible areas relative to the accessible areas per

unit of time. In addition to zipcode and year fixed effects, the specification includes a

CBSA-by-post indicator to control for time-varying cohort effects.

In order to obtain an estimate for pre-period Yjt in inaccessible locations, I remove zipcode

fixed effects and instead add dummies for inaccessibility, InaccessNj , and treatment-by-city

dummies, InaccessNj ×Cityj to control for cohort-treatment fixed effects. The coefficient on

InaccessNj yields the pre-period average Yjt, useful to gauge the magnitude of the treatment

effect.

Yjt = InaccessNj + Postt + βInaccessNj × Postt + CBSAj

+ CBSAj × Postt + InaccessNj × CBSAj + εjt

(11)

Focusing on the main outcome of interest, restaurant net creation, validity of this research

design requires three assumptions: first, the parallel trends assumption; second, exogeneity
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of UberX entry to within–city restaurant dispersion; and third, that these results are not

driven by gentrification, urbanization, or other residential sorting that pulls restaurants to

new locations instead of UberX entry pushing them farther out. Section 4 provides evidence

to support each assumption.

4 Reduced-Form Results

4.1 Ridesharing’s Entry Induces Restaurant Dispersion

Prior to ridesharing’s entry, restaurant inaccessible zipcodes had on average 14 restaurants as

shown in Table 4. Table 6 shows the results of the differences-in-differences analysis. Column

(1) matches estimating Equation 10, and shows that after ridesharing’s entry, inaccessible

zipcodes create 0.74 net new restaurants more than their accessible peers in the same city.

Column (2) adds time-varying demographic controls to assuage concerns of demographic

drivers pulling restaurants towards inaccessible neighborhoods; the point estimate is stable

at 0.73. Finally, column (3) removes the zip code fixed effects, instead controlling for city

and city-by-inaccessibility, as in Equation 11. This enables one to back out a point estimate

for pre-period restaurant net creation in inaccessible zipcodes. The results in column (3)

are consistent with the other columns, with the impact of ridesharing’s entry on inaccessible

areas adding an additional 0.74 net new restaurants, relative to their accessible peers, and

inaccessible zipcodes adding on average 0.72 restaurants per year in the pre-period. Column

(3) shows that inaccessible locations are doubling their rate of restaurant net creation from

5% (0.72/14) in the pre-period to 10% (1.46/14) in the post-period.

4.1.1 Testing Parallel Trends

The parallel trends assumption requires that inaccessible and accessible locations would have

similar trends in restaurant net creation or house price growth in the absence of rideshar-

ing. Table 4 tests whether restaurant net creation, HPI and ZRI differ in accessible and

inaccessible locations in the pre-period. Restaurant net creation is more than twice as high

in accessible locations than inaccessible locations, and these locations have nearly twice the
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stock of establishments. As long as this net creation difference is stable in the pre-period,

there is no violation in parallel trends, and β is unbiased and correctly identified.

The event study in Figure 6 provides a check for parallel trends. A violation of parallel

trends would manifest as a nonzero slope different from zero in the years prior to UberX

entry, while an exogeneity violation would show an uptick in the point estimate in the year

or two prior to entry. The graphs plot the point estimates from Equation 12 for the three

years pre- and post-UberX entry.

Yjt =
3∑

k=−3
βkInaccess

N
j ×RelY eark + yeart + zipj + εjt (12)

The left-hand panel plots the event study for annual restaurant net creation, Yjt =

∆#Restaurantsjt, the right-hand panel plots restaurant net creation rate,

Yjt =
#Restaurantsjt −#Restaurantsj,t=0

#Restaurantsj,t=0
. In order to construct a balanced panel with

three years of data on either side, I limit the sample to 19/34 cities with full post-period

data. The annual restaurant net creation graph shows no evidence of pre-trends, with all of

the pre-period point estimates statistically indistinguishable from 0. In the post-period, two

of the three years have point estimates bounded away from 0, and nearing 0.9. For the net

creation rate graph, there is again no evidence of any pre-trend that would violate the parallel

trends assumption. All of the pre-period point estimates are statistically indistinguishable

from 0. By the end of the post-period, inaccessible zipcodes have added approximately 20%

more of their restaurant stock relative to accessible zipcodes in the same city.

4.1.2 Testing Exogeneity of UberX Entry

Addressing the second assumption stated at the end of Section 3, we need to establish that

Uber did not strategically enter cities after observing an expansion in restaurant amenities.

Uber is not forthcoming in its reasons for entry, with little discussion on its city level blogs.

Lief Johnson, Uber’s Director of New Mobility, has said publicly that Uber considers first

population size.13 Other important variables include the availability and affordability of

current public transit options in the city as a whole. Hall, Palsson and Price (2018), in
13https://motherboard.vice.com/en_us/article/vv734x/what-it-takes-to-lure-uber-to-your-small-town
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testing whether Uber is a substitute or complement to public transit, show that the main

determining factor in UberX’s entry date is indeed a city’s population size. Specifically,

they find that when comparing any two cities in which UberX entered, the probability that

UberX entered the larger city first is 68%. No other explanatory variable has even half the

magnitude of impact as population. The authors conclude that UberX’s entry decision is

largely based on tackling large markets first, and is uncorrelated with variables relating to

transit ridership.

In contrast to Hall, Palsson, and Price, identification in this paper’s context requires

that UberX entry be exogenous not to city-level characteristics, but to how characteristics

differ within cities. Table 5 tests for whether UberX’s entry month occurs earlier based on a

variety of city-level characteristics in the year prior to entry. In the top univariate panel, we

find that an additional million residents in the CBSA predicts that UberX enters 3 months

earlier. We also see that UberX enters richer and more educated cities earlier, as well as those

with many new restaurants. Looking within cities, in the bottom panel, we see that almost

none of the differential characteristics predict UberX entry. Indeed, the point estimate on

restaurant creation in inaccessible vs. accessible locations is identical and insignificant.

The event studies in Figure 6, also support exogeneity of UberX entry. Neither graph

suggests restaurant dispersion in the pre-period, making it unlikely that Uber strategically

entered with perfect timing in 19 separate cities upon observing dispersion.

4.1.3 Testing Gentrification and General Urbanization

The kinked time path of the point estimates in the event studies support the assumption that

generalized urbanization or gentrification trends are not causing the dispersion in restaurants;

however, to gauge how UberX interacts with gentrification and urbanization forces, we can

analyze how industries less likely to be impacted by UberX respond to its introduction.14

Table 9 tests two industries’ responses to UberX entry, using the appropriate industry-specific

InaccessNj .

Column (1) presents the restaurant results from Table 6. Dry cleaners represent a com-

mon neighborhood good, which we are unlikely to switch after the introduction of ridesharing;
14Even if gentrification occurs linearly, UberX might be amplifying urbanization and gentrification
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there is not much to be gained in variety by traveling to a new location. They also represent

a good tied to gentrification, as dry cleaning services are normal and so should increase as

a location becomes gentrified, and higher income. In the pre-period, dry cleaning inacces-

sible zipcodes had a 0% growth rate off of a stock 5 establishments. The point estimate in

column (2) implies that these inaccessible zipcodes gain an additional 3% of their stock in

the post-period. While restaurant-inaccessible locations gain an additional restaurant every

8 months, it will take an a dry cleaning inaccessible zip code 7 years for a new establishment

to open. So while UberX may be interacting with gentrification, opening up areas to new

neighborhood amenities, the rate is far below the impact on an industry directly effected by

falling travel costs.

Column (3) in Table 9 shows the results for dentists, a nontradable service we travel to,

but which we are unlikely to switch with the introduction of a new travel mode. This inelas-

ticity comes from the high cost of switching one’s dentist , which outweighs any gains from

exploring a variety of dental service providers. Dentists then represent general nontradable

services in a city, which should disperse with the city if the restaurant results are driven

by urbanization instead of redistribution of trips in space induced by ridesharing. Column

(3) finds no evidence of general nontradable services dispersion, with the point estimate for

dentists and insignificant 0.11.

Finally, Appendix Figure F1 shows that resident demographic characteristics do not

appear to respond to UberX entry in the first three years; populations remain stable, and

new entrants seem neither higher income, nor differently educated.

4.1.4 Restaurant Results Robust to Different Travel Modes

The NHTS data indicate that residents switch from public transit to ridesharing for social

and recreational trips, motivating construction of the InaccessNj metric using the matrix of

public transit travel times between all origins and destinations in the set of cities; however,

this is not the only travel metric useful to construct. I construct the InaccessNj variable

similarly, only changing the origin-destination input matrix for a variety of other travel

times: the wedge between transit and driving times, the geodesic distance, and the driving

times. Each metric illuminates one more aspect of how residents change their travel pat-
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terns in light of improvements in accessibility. Table 7 shows the correlations between the

binary treatment indicators, for example (Distance, Transit) shows the correlation between

InaccessNj (transit) and InaccessNj (distance). None of the different metrics are perfectly cor-

related with each other, so they highlight different margins along which access has changed.

Table 8 shows the results of changing the inaccessibility metric in Equation 10. Column

(1) is identical to column (1) in Table 6, and shows that the least transit accessible zipcodes

add an additional 0.74 restaurants relative to transit accessible zipcodes. Column (2) uses

the wedge, or the difference between driving and transit times, and shows that the areas

with the highest discrepancy between the two add an additional 0.58 net new restaurants

in the post-period. While highly correlated with the transit treatment, a zipcode with a 25

minute mean transit time and a 10 minute mean driving time is indexed similarly to one

with a 40 minute mean transit time and a 25 minute mean driving time; both have a 15

minute wedge, but the first zipcode is more central to the city, pushing the point estimate

downwards relative to the transit time metric. The difference between the wedge and transit

results highlight that activity increases most in areas that see a large drop in travel time

(large wedge), and are also farther from the transit lines.

Column (3) in Table 8 shows the results when using the geodesic distance origin-destination

matrix to construct InaccessNj . This column is infrastructure invariant across cities, allow-

ing us to check whether reducing travel costs leads to restaurant dispersion, abstracting from

road and transit networks. The point estimate falls to 0.51, but remains statistically signif-

icant, showing that places farther away from the city centers see an increase in restaurant

activity.

Finally, column (4) provides a convenient placebo test of the natural experiment; simply

put, a zipcode difficult to reach by car in the pre-period remains difficult to reach by car.

The point estimate is less than a third as large as the transit results, and cannot be distin-

guished from zero, indicating UberX has had little to no impact in areas difficult to drive

to. Additionally, interacting transit and driving inaccessible locations, Table E3 provides

additional evidence that net creation is happening in strictly transit inaccessible locations.
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4.1.5 Additional Robustness Checks

The results so far have explored a variety of controls, inaccessibility measures (including a

placebo), and heterogeneous industries (including placebos) with the consistent finding that

restaurants are dispersing in the age of ridesharing. These results do not show evidence of

pre-trends or strategic UberX entry, remain across different access measures, do not hold

for industries unlikely to be impacted by ridesharing, and remain robust to controlling for

time-varying demographic controls. I perform a number of additional robustness checks.

Table E4 creates a zipcode-employement size category - year panel, in order to have more

observations within a zipcode-year for estimating Equation 10 with linear zipcode time

trends.15 The results remain robust, with each zipcode-size category adding 0.25 restaurants

per year, since there are three categories, this sums to the familiar 0.74 restaurants per

zipcode per year. Adding time trends lowers the point estimate to 0.21, as shown in column

(3) of Table E4, for a total impact of 0.63, in the ballpark of the main results.

The results are also robust to defining the city according to different radii, expanding

the set of zipcode origin-destination pairs; the point estimate in Table E5 falls from 0.74∗∗∗ at

a city with a 5-mile radius to 0.14 with a 10-mile radius, with the point estimates statistically

significant through a 9-mile radius.

Using a dose-response design, in which I interact mN
j with Postt, the point estimates

in Table E6 imply that a zipcode with an additional minute of average transit travel time

adds 0.02 more restaurants per year after UberX entry; for a zipcode that it takes, on

average, 30 minutes to get to, this translates into 1 additional new restaurant every 2 years.

I can also implement a binned dose response design, in which zipcodes are divided

into quintiles based on the 20th, 40th, 60th, 80th, and 100th percentiles of travel times to

restaurants. The results, in Table E7, show that relative to the most accessible quintile,

most of the restaurant creation happens in the 3rd and 4th quintiles, which go from adding

0.7∗∗∗− 1 new establishments in the pre-period, to adding 1.3∗∗∗− 1.5∗∗∗ in the post-period.

In addition, the second quintile sees no impact due to ridesharing, so it does not seem
15The CBP zipcode level data is a panel of zipcodes, over NAICS codes, over employment size classes. The
main results for restaurants sum over all employment classes with between 10 and 100 employees
(restaurants with fewer employees comprise a small (< 3%) share of employment in the industry, and add a
lot of noise to the data as they open and close often.)
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that establishments relocate from the accessible zipcodes to inaccessible, rather this is true

establishment creation.

Finally, the results are robust to controlling for whether a city is one of the top 5 most

public transit reliant cities, at least for commutes, as defined by the 2010 ACS commuting

mode data from Table E2. Controlling for whether at least 10% of a city commutes via public

transit in Table E8 drops the point estimate from 0.74∗∗∗ to 0.64∗∗∗, with the top 5 most

transit reliant showing an additional impact of 0.33.

The Other App Adoption Appendix discusses how ridesharing interacts with other

platforms that might be contributing to the main findings. For example, Yelp and UberX

amplify each other by providing information and access; however, the existence of these other

online platforms cannot explain the kinked nature of the event studies, and their entry does

not correspond with UberX’s.

Finally, in the Travel Appendix, I check to make sure that travel patterns have dis-

persed into InaccessNj areas along with restaurant activity. I explore travel trends in New

York City as well as national automotive vehicle emissions, both of which support the hy-

pothesis that residents travel more via car than in the pre-period. The NYC results suggest

this is due to taking trips to more transit inaccessible locations; even if residents take the

same number of trips, this implies changing from transit to ridesharing. The emissions re-

sults find that inaccessible areas within cities see an increase in emissions of nearly 10%,

averaged over nearly five years.

4.2 Implications for Residential Housing Costs

The direct effect of UberX entry is to make inaccessible locations easier to reach. Indirectly,

as restaurants move into previously inaccessible locations, these zipcodes endogenously im-

prove, and the increased desirability will be reflected in house prices, as hypothesized in

section 3. Figures 7b and 7a show that rents for the average zipcode have increased by ≈ 3%

after 4 years, and the median house price has increased by nearly 10% after 2 years. 16, 17

16Figure F9 shows some neighborhoods become superstars, with the mean house price growth topping 20%
after 2 years.

17Due to data availability, one cannot track house prices as long as rents.
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Three components drive the observed changes in house prices. First, these locations have

become closer to the city with the introduction of ridesharing. Second, they benefit from

amenities such as restaurants moving in. Third, homebuyers may expect these locations to

improve further. Differentiating between a location’s status as being restaurant-inaccessible,

InaccessNj , and resident-inaccessible, InaccessRj , can help disentangle the impacts of im-

provements in access from improvements in amenities.

Both improvements in amenities and access contribute to higher house prices. Table 10

shows the impact of UberX entry on median house price indices in resident-, InaccessRj , and

restaurant-inaccessible, InaccessNj , zipcodes.18 The table shows meaningful HPI impacts

from both the increase in amenities, column (1), as well as the increase in access, column (2).

Column (1) shows that house prices for the median restaurant-inaccessible zipcode rose by 3%

in the post-period. Column (2) shows that house prices for the median resident-inaccessible

zipcode rose 3% in the post-period. Column (3) interacts both types of inaccessibility;

restaurant-inaccessible only zipcodes see a 4% increase in HPI, resident-inaccessible only

zipcodes realizes an increase of 2%, and should a zipcode be both resident- and restaurant-

inaccessible, the gains to UberX entry total 3%. Taken together, the magnitudes of the

impacts for endogenous amenity improvements and improvements in access are similar, but

for the median zipcode, house prices increase nearly twice as fast with better amenities than

with better access.

Table 11 presents the same analysis, but for the mean Zillow Rent Index (ZRI). The third

row of column (1) shows that the average restaurant-inaccessible zipcode sees rents grow 1%

per month more in the post-period, relative to accessible peers. The fifth row of column

(2) shows that the average resident-inaccessible zipcode sees 0.4% rent growth, though this

is indistinguishable from 0. Column (3) runs the horse race to distinguish the impact of

access from the impact due amenities. The third row of column (3) states that restaurant-

inaccessible zipcodes see an additional 1.6% rent growth, relative to accessible zipcodes.

The fifth row states that resident-inaccessible zipcodes see an additional 1.8% rent growth.

Column (3) shows that zipcodes which are both resident- and restaurant-inaccessible benefit
18House price results show median instead of mean impact due to large outliers in the right tail driving up
average house price growth.
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less from UberX entry, with the rent increase totaling 1%. Rents grow in zipcodes of both

inaccessibility types in the post-period, and in contrast to the house price results, grow at

similar rates.

Taken together, the restaurant and house price results show that ridesharing has had a

meaningful impact already in reshaping our cities. Private amenities have begun to disperse

in measurable ways, and house prices and rents have responded to the changing spatial

distribution of access and consumption.

5 Resident Welfare in the Age of Ridesharing

The reduced-form estimates measure the impacts on of ridesharing on the spatial distribution

of restaurants, travel and house prices. By framing these costs and benefits in a spatial model

of consumer demand, one can weigh the dollar costs of increased house prices against the

benefits of fewer minutes of travel and more restaurant amenities. All derivations are in the

consumer theory appendix.

The model follows the demand structure developed by Ahlfeldt et al. in their 2015 paper,

in which they develop an empirically tractable spatial equilibrium framework.19 Zipcodes

in cities contain economic activity, including firm and resident locations, and are linked by

roadways and other transit infrastructure. In contrast to many of the papers in the spatial

equilibrium literature, the model abstracts away from any labor supply response, motivated

by the NHTS data suggesting residents do not commute to work via ridesharing. This

removes the joint location problem or where to live and work, fixing both locations exogenous

to the model. An additional adaptation fixes housing supply, since housing markets are

highly inelastic in the short term. This fixes the number of residents in a given location.

Residents choose how much housing, tradable goods, and nontradable amenities to consume,

as well as where to consume nontradable amenities, conditional on their residential location.

Aggregating up consumers’ demand for nontradables across all potential origins yields a

local demand function for nontradable amenities in each destination. Nontradable amenity
19By nesting this demand structure in the full equilibrium model, we can later perform counterfactual
experiments.
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producers then clear the markets by matching demand.

Resident utility is a function of data and parameters. By estimating the local demand

function, we recover parameters necessary to estimate welfare. In combination with data

on income, travel times, and housing, one can construct a welfare money metric for a given

origin-destination pair. Finally, I calculate residents’ willingness to pay for UberX entry, and

observe whether homeowners or renters benefit more from entry.

5.1 Residents’ Demand for Nontradables

The goal of the resident’s problem is to determine local demand in each location within a

city for three goods: a nontradable amenity we must travel to, ni, a tradable good, ci, and

housing, hi. Destinations are indexed by j, and residences are indexed by i.

A resident maximizes her utility over consuming housing, tradable goods and nontradable

amenities, subject to an endowed income constraint:

max
ni,ci,hi

(hi
β

)β(ci
α

)α( ni

1− β − α

)1−β−α zij

eτmij
(13)

s.t. Ii = qihi + pci + ni (14)

Utility is Cobb-Douglas, with an idiosyncratic preference term, zij, Frechet distributed,

F (zij) = e−TiEjz
−ε
ij , which governs where the nontradable amenity is eventually consumed. Ej

is the average amenity value of destination j, similar to a destination fixed-effect; Ti is Ej’s

origin counterpart. ε governs substitutability between locations for the nontradable amenity.

Residents trade off travel against uniqueness when choosing where to consume. For example,

restaurants will have high ε, and so we will be willing to travel long distances to a particularly

attractive restaurant. Dry cleaners, on the other hand, are not very differentiated, so the

cost of travel is not justifiable and we will observe these to be clustered by residences. mij is

a distance term, in minutes, between locations i and j. τ is a scaling parameter that raises

or lowers mij, and can be thought of as the opportunity cost of travel time. Ii is the endowed

income for a resident in location i. qi is the local price of housing.20 p is the price of tradable
20The model normalizes the price of nontradable services, the object of interest, rather than the price for the
outside good, housing, for three reasons. First, is data availability. Extensive margin changes for amenity
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goods, which does not vary in space.

Maximizing utility leads to the following Marshallian demands:

ni = (1− β − α)Ii (15)

hi =
βIi

qi
(16)

ci =
αIi

p
(17)

Intuitively, consumers allocate a share of their income to nontradable services, and a share

to housing, which depends inversely on the price of housing. Plugging in these Marshallian

demands into the utility function, we can derive the indirect utility for the resident in location

i traveling to location j:

Vij =
(hi
β

)β(ci
α

)α( ni

1− β − α

)1−α−β zij

eτmij
=
(Ii
qi

)β(Ii
p

)α
(Ii)1−β−α

zij

eτmij
=

Iizij

qβi p
αeτmij

(18)

Utility along route ij depends on the income and house prices in the origin location, the

price of tradables, the idiosyncratic shock, and the time it takes to travel between the origin

and destination.

5.1.1 Deriving the Local Demand Estimating Equation

Given that zij is Frechet distributed, Vij is also Frechet distributed. Let the probability of

taking trip ij to consume nontradable amenities be ρNij , then

demand, establishment flow, and local housing rents are observable, while intensive margin changes for
amenity demand, prices, are unobservable. Second, rental payments are much larger as a proportion of
consumer budgets than amenity prices. Third, the price impacts from the introduction of ridesharing are
less clear than on housing or restaurant net creation. On the one hand, the introduction of ridesharing
brings establishments closer to each other, increasing competition, lowering local market share, and putting
downward pressure on prices until less productive establishments exit. On the other hand, ridesharing
brings establishments close to customers, increasing the demand for their services, pushing prices up and
encouraging entry. The net effect in the data shows that the increase in demand wins out; more
establishments have been added and rents have increased, but the implications for price are ambiguous. It
is not within the current scope of this framework to model local competition along with the increase in
access, so the model focuses on the extensive margin problem, with establishment entry being tied to local
rents and access.
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ρNij =
Ej(eτmij)−ε∑
sEs(eτmis)−ε

(19)

ρNij is the probability that a resident in location i travels to consume nontradables in

destination j; it is akin to a firm’s access to consumers. For nontradable amenity demand in

location j, Nd
j , we sum over all possible origin location’s travel probabilities, ρNij , weighted

by the number of residents in the origin locations, Ri, and how large their wallets are, Ii.21

Nd
j =

∑
i

ρNij ×Ri × Ii

= Ej
∑
i

RiIi(eτmij)−ε∑
sEs(eτmis)−ε

(20)

Intuitively, the term in the summation can be thought of as a market access term: how

many residents, Ri, are available to travel from all potential origin zipcdoes, i, to destination

zipcode j, weighted by the travel distance, eτmij , between i and j in city c. As distance

between i and j grows, (eτmij)−ε decreases; the farther apart are two locations, the less likely

income will flow from i to j.

Producers of nontradable amenities scale up production according to local demand, Nd
j ,

so that the nontradables market clears: N s
j = Nd

j = Nj. As discussed in developing the

empirical inaccessibility metrics, local demand depends on the probability of taking trip

ij, weighted by how many residents and how much income travels along that route. The

number of residents, Ri, is exogenous to the model as there is no new residential building,

and buildings cannot be converted between the commercial and residential sectors.

5.2 Constructing A Money Metric for Welfare

In order to compare residents’ welfare before and after UberX entry, one can take expecta-

tions over the utility in Equation 18 to find the expected utility of living in location i:
21In this setting, the number of residents, Ri, in an origin is taken as fixed and exogenous to the model;
however, in the standard spatial equilibrium framework, firms care about access to consumers, while
consumers care about access to firms. Consumers then have an associated trip share,

ρNij =
TiI

ε
i (eτmijqβi )−ε∑

r TrI
ε
r (eτmrjqβr )−ε

. This allows for endogenous resident location, Ri =
∑
j ρ

R
ij ×Nj , depending on

Nj .
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E(Vij) = E

 Iizij(ε)
qβi p

αeτmij

 =
IiΓ

(ε− 1
ε

)
qβi p

α

E
1
ε
j

eτmij
(21)

To create a money metric, note that we can log-linearize the utility function along a route

ij,

ln(Vij) = ln(Ii) + ln(Γ
(ε− 1

ε

)
) +

1
ε
ln(Ej)− βln(qi)− αln(p)− τ̂mij (22)

Equation 22 puts utility and its components in terms of elasticities; for example, a 1%

change in housing costs decreases utility along route ij by β%. Equation 23 holds utility

fixed, so that we can find the amount of income needed to balance the changes in qi, p, Ej,

τ̂ , and mij, that is, to bring a resident to utility of 0:

ln(Ii) = βln(qi) + αln(p) + τmij −
1
ε

ln(Ej)− ln(Γ
(ε− 1

ε

)
) (23)

To calculate the willingness-to-pay for UberX entry, we can compare the income needed

to reach 0 utility in the pre- and post-periods:

WTPij = Iprei − Iposti (24)

Intuitively, if a resident needs fewer dollars to reach a utility level of 0 in the post-period

than in the pre-period, he or she is willing to pay money for UberX entry. The difference in

compensation is the willingness-to-pay.

WTPij relies on a variety of estimated and calibrated inputs. In order to recover (time-

varying) destination quality, Ej, and the opportunity cost of travel time, τ , one estimates the

local demand function in Equation 20. Rents and travel times, qi and mij, are equilibrium

outcomes not solved for in the model. I estimate q̂j and m̂ij using the UberX natural

experiment in the reduced-form section in order to recover the exogenous component of

house price change and travel time change.22 I calibrate ε = 8, which is among the higher

range of elasticities of substitution for amenities, but in line with those estimated for the
22When predicting q̂j and m̂ij , I use the continuous variable mN

j instead of the discreet InaccessNj interacted
with Postt as this is closer to ρNij , which is a continuous measure of access.
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restaurant industry (Couture, (2016); Atkin et al. (2018); Einav et al. (2019); Su (2018);

Couture et al. (2019)). Finally, β = 0.3, and α = 0.6 consistent with literature on the share

of housing and tradables expenditure shares in overall consumption. Finally, p is taken as

the city-specific non-housing CPI from the Bureau of Labor Statistics.

5.2.1 Recovering τ and Ej

Log-linearizing Equation 20 allows estimation via nonlinear least squares (NLS) to recover

the combined Frechet - travel cost parameter, ετ , as well as the non-observable zipcode level

characteristics, Ej:

ln(ncj) = κc + ln

(∑
i∈c

Rc
i (eτm

c
ij)−ε

)
+ ln(Ec

j ) (25)

j indexes destination zipcodes within a city, c, with i indexing origin zipcodes. κc =∑
s∈cEs(eτm

c
is)−ε is a city-level fixed effect, as the term in the denominator of Equation 20

does not vary across zipcodes within a city.

Taking the model to the data, Nj is the annual zipcode level establishment count for

restaurants, from the Census’ County Business Patterns. Ri is zipcode level population,

from the annual American Community Survey. mij comes from travel times scraped from

Google Maps, in combination with survey data from the NHTS, details of construction follow

in the NHTS Appendix. The parameters of interest are ετ , and Ej.

Estimation is performed using either pre-period or post-period data to estimate ε̂τ pre
and ε̂τ post separately. Table 12 has the results of the estimation, showing that the cost of

travel has fallen by half from τ̂pre = 0.02 to τ̂pre = 0.01, reflecting the increased ease of travel

by private, flexible, and cheap ridesharing options. These results are in line with previous

estimates from Tsivanidis (2019), who finds τ = 0.012, and Ahlfeldt et al. (2015) who find

τ = 0.01.

5.2.2 Estimating qi for Renters and Homeowners

The reduced-form results show that house prices rise differentially in inaccessible areas in

the post-period. This will have different implications for renters and homeowners. Renters

will see the cost of living in a location rise, while homeowners will see their user costs fall
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as their equity rises. This necessitates two different version of qi. Since qi is an equilibrium

outcome, we need to isolate the UberX specific component of changes in qi. For renters,

I regress rents in dollars, using the ZRI, on the continuous treatment variable, mN
j , which

measures average travel time to location i, interacted with Postt:

ZRIit = λmN
j × Postt + yeart + zipi + εit (26)

This yields the UberX implied portion of monthly rent increases. To get annual rent

expenditure, qZRIi , I multiply the predicted ˆ(ZRIit) by 12. For homeowners, I regress HPIi
constructed using the CoreLogic data on the same treatment and post variables:

HPIit = λmN
j × Postt + yeart + zipi + εit (27)

This yields the UberX implied portion of house price index increases. To get an annual

housing cost in dollar terms, I first multiply ˆHPIit by the value of a housing transaction in

2010, the first year in my sample. The provides the exogenous changes in house price, qHPi ,

as opposed to index, over the sample. Finally, the annual carrying cost of a home can be

measured in its user cost:

UCi = (1− τI)rqHPi + (1− τI)τpqHPi + (µ+ δ + γ)qHPi − πeqHPi (28)

Where τI is the resident’s income tax bracket, τp is local property taxes, µ is maintenance

cost, δ is depreciation costs, γ is the risk premium, and πe is expected nominal capital gains.23

When a house appreciates in value, the mortgage and maintenance costs remain fixed, but

the tax burden and expected capital gains increase:

UCit = ((1− τI)r + µ+ δ + γ)qHPi0 + ((1− τI)τp − πe)qHPit (29)

Equation 29 shows how, as qHPit increases, as long as (1− τI)τp < πe, user costs will fall.24

This implies we can expect homeowners to see falling housing costs, compared to renters

who experience rising housing costs.
23This form of user cost assumes one can borrow and lend at the same rate.
24I calibrate user costs using the following parameters: τI = 0.36, r = 0.045, µ+ δ = 0.04, γ = 0.02,
τp = 0.01, and πe = 0.03
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5.3 Calculating the Dollar Value of UberX Entry

With the estimated parameters, exogenous rents and house prices, and calibrated parameters

in hand, we can calculate the compensation needed for residents to reach a utility of 0 before

and after UberX entry. When UberX enters a city, it directly changes travel times, mij, as

residents switch from transit to driving, as well as travel costs, τ̂ . As residents, restaurants,

and housing markets respond, house prices and destination zipcodes’ values endogenously

respond. Tables 13 and 14 show the willingness to pay for UberX entry holding each of these

components fixed to their pre-period levels. This allows one to decompose the willingness-

to-pay by travel times and costs, housing costs, and amenities.

The first row of Table 13 shows the annual pre-period dollar compensation needed to

bring a resident to 0 utility, by whether the resident lives in an inaccessible or accessible

location.25 In the pre-period, accessible homeowners need $7,814 in compensation, while

inaccessible homeowners need $6,485. The second row documents how compensation changes

when travel costs, τ , fall, holding all else fixed. Now, accessible homeowners need $6,996

in compensation, and inaccessible homeowners need $5,783. Had they been given their pre-

period compensations, they would have positive utilities of $818 and $702, respectively. By

bringing them back down to their original utilities of 0, this reflects a WTPi of $818 and

$702. The third row varies travel costs and times. This actually lowers willingness-to-pay, as

the distribution of travel times no longer matches the distributions of amenities or prices; in

effect, times have decreased to places with poor amenities and increased to places with many

amenities. Willingness-to-pay increases markedly in row 4, reflecting that homeowners have

seen large gains to their equity position in the ridesharing era as user costs fall. Finally, after

allowing amenities to resort, destination quality improves and homeowners’ willingness-to-

pay increases again, to $945–$1178 depending on accessibility status. This translates to a

monthly WTP for ridesharing of $79–$98. Inaccessible homeowners are willing to pay 14.6%

of their pre-period compensation for UberX entry. Accessible homeowners are willing to pay

15.1% of their pre-period compensation for UberX entry, showing that while homeowners in

both locations are better off, accessible homeowners have benefited by 0.6% more. While
25Since each origin is connected to 12 destination, the numbers in Tables 13 and 14 multiplies the per-route
WTPij by 12 to get the total WTPi conditional on living in i.
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house prices grew faster in inaccessible locations, they are still higher in levels in the accessible

locations; slower growth off a higher base yields more capital gains in dollars.

Table 14 shows the same welfare exercise for renters. In the pre-period, accessible renters

needed $6,565 in compensation, while inaccessible renters needed $5,899. After travel costs

fall, accessible and inaccessible renters are willing to pay about $665. This time, the fourth

row shows that allowing for housing costs to change decreases the willingness-to-pay substan-

tially, falling from $666 and $665 for accessible and inaccessible renters to $275 and $250. In

contrast to homeowners, who experience lower user costs as house prices rise through gains

in equity, renters take only the price hit. Allowing amenities to adjust in the post-period

balances out some of the rent burden, as renters enjoy access to better destinations, increas-

ing willingness-to-pay with the full model to $467 and $394 for accessible and inaccessible

renters. This translates to a monthly WTP of $33–$39. In all, renters in inaccessible loca-

tions are willing to pay 6.7% of their pre-period compensation, while renters in accessible

locations are willing to pay 7.1%, showing that renters in accessible locations realize higher

welfare gains than their inaccessible peers. This is because they enjoy increases in access

and amenities, without as much increase in rents.

While all residents gain from UberX entry, the homeowners are the welfare winners in

this exercise. The average homeowner is willing to pay $1,060 for UberX entry, while the

average renter is willing to pay $430, only 40% as much. As rents and house prices continue

to rise, the wedge between renter and homeowner WTP may continue to grow, eventually

leading to renter displacement if housing supply does not adjust to put downward pressure

on prices.

6 Conclusion

This paper contributes to our understanding of accessibility and consumption and provides

evidence that the spatial distribution of consumption has responded to ridesharing’s entry.

By exploiting the staggered entry of UberX crossed with the pre-existing distribution of

access within cities, the paper explains how ridesharing has begun reshaping our cities. I

find that ridesharing has already meaningfully impacted restaurant dispersion, house prices,
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and resident welfare by expanding the set of desirable and accessible zipcodes in cities.

Restaurant net creation in inaccessible locations doubles in the post-period, as local demand

changes in space. As these inaccessible areas become more desirable, house prices rise by

4%, reflecting their improved access and amenities.

Embedding these reduced-form findings in a spatial demand structure provides a means

to weigh the benefits of improved access and amenities against the cost of rising house prices.

I find that homeowners are willing to pay nearly 2.5 times as much for UberX entry than

renters, as they can capture equity gains from increases in house prices, while renters only

see higher costs. Residents in both inaccessible and accessible locations see welfare gains,

but both renters and homeowners see marginally higher welfare gains in accessible areas.

These findings contribute to our understanding of neighborhood dynamics and gentrifi-

cation in a variety of ways. First, we can observe in real time which economic agents respond

to changes in neighborhood accessibility. In contrast to much of the research on how trans-

portation reshapes cities, which primarily compares two equilibria, one prior to the change

in infrastructure and one often decades later, the quick entry of ridesharing independent

of urban planning allows researchers to study the impacts in real time. There is no need

to wait for full roll-out or adjustment. This paper suggests that amenities most sensitive

to changes in travel respond first, followed by house prices. Time will tell whether other

industries follow as these areas continue to improve, or whether residents begin to resort,

changing local labor supply.

The paper also signals that further work is needed to understand whether ridesharing’s

introduction will induce more gentrification or revitalization in previously inaccessible loca-

tions. While rents and house prices have risen in the post-period, these annual increases

are well within the bounds allowed by rent-stabilization policies. Furthermore, the lack of

evidence of neighborhood sorting thus far suggests that housing costs have not become bur-

densome enough for residents to be displaced. In the medium to long term, whether inacces-

sible neighborhoods revitalize or gentrify will depend on their local housing and commercial

real estate supply elasticities, as well as the ease of conversion between the two sectors, sug-

gesting that local zoning restrictions will play a large role in the eventual character of the

inaccessible zipcodes.
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Tables

Table 1: NHTS Trip Shares by Mode

All Origins Central Origins
2009 2017 2009 2017

All Trips
% driving 95 94 82 71
% transit 5 5 17 25

% taxi/ridesharing 0 1 2 4
Work Trips

% driving 90 89 73 59
% transit 10 10 25 39

% taxi/ridesharing 0 1 1 2
Social & Recreational Trips

% driving 94 93 81 70
% transit 5 5 18 20

% taxi/ridesharing 1 2 2 10

Notes: This table shows the trip shares by purpose over modes in the 2009 and 2017 NHTS
confidential trip files. Sample covers 31 U.S. CBSAs with at least 2 million residents in 2010.
All trips originate at home, to maintain cross-wave comparability of 2009 and 2017 data.
Central Origins are defined as those trips from home with a home census tract identified as
laying within a 5 mile radius of the city center.
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Table 2: NHTS Trip Shares by Purpose

All Origins Central Origins
2009 2017 2009 2017

All Trips
% Work 19 23 20 32
% Social 17 17 19 17

Driving Trips
% Work 18 21 20 26
% Social 17 17 18 18

Transit Trips
% Work 33 46 36 50
% Social 16 13 24 14

Taxi/Ridesharing Trips
% Work 11 19 16 24
% Social 23 34 13 46

Notes: This table shows the trip shares by type of travel mode over trip purpose in the 2009
and 2017 NHTS confidential trip files. Trip purposes not included in table are “other” and
“shopping”. Sample covers 31 U.S. CBSAs with at least 2 million residents in 2010. All trips
originate at home, to maintain cross-wave comparability of 2009 and 2017 data. Central
Origins are defined as those trips from home with a home census tract identified as laying
within a 5 mile radius of the city center.

Table 3: UberX Entry Year

Entry Year Cities City Names
2012 2 New York, San Francisco

2013 16

Atlanta, Baltimore, Boston, Charlotte,
Chicago, Dallas, Denver, Detroit, Los

Angeles, Minneapolis, Phoenix,
Sacramento, San Diego, Santa Barbara,

Tucson, Washington DC

2014 14

Cincinnati, Colorado Springs, Houston,
Kansas City, Miami, Orlando,

Philadelphia, Pittsburgh, Portland,
Raleigh, Riverside, San Antonio, Tampa

2015 2 Las Vegas, St. Louis

Notes: This table lists cities’ UberX entry years. When possible, entry year is determined by
Uber’s city-specific blog post announcing expansion of services to the city. If not available,
local news sources provide UberX launch dates.
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Table 4: Balance Table for Outcome Variables

InaccessN
j = 0 InaccessN

j = 1 Difference
Yjt

∆(# Restaurants) 1.43 0.67 0.76∗∗∗
(0.15) (0.07) (0.15)

HPI 1.74 1.72 0.02
(0.02) (0.02) (0.03)

ZRI 0.95 0.96 -0.004∗∗∗
(0.00) (0.00) (0.00)

Related Descriptives
#Restaurants 26 14 12∗∗∗

(1.01) (0.52) (1.02)
House Price ($1000’s) 645 432 213∗∗∗

(53) (47) (78)
Rents ($) 1,620 1,525 95∗∗∗

(8.35) (8.03) (13)

Table 5: UberX Entry Uncorrelated with Within City Characteristics

population earnings fraction bachelor’s degree restaurant net creation
City Wide

β -3.23** -0.47** -0.44** -0.11***
Within City

βaccess -5.6 -0.25 -0.02 -0.17
βinaccess -16.6 -0.06 -0.44** -0.17
Obs. 34 34 34 34

Note: This tables regresses UberX entry month, on city level characteristics for the
34 cities in the sample in the top panel, Monthc = βXc + εc. The bottom panel
regresses entry month on within-city characteristics for the same cities, Monthc =
βAccessXAccess

c + βInaccessXInaccess
c + εc.
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Table 6: Restaurant Net Creation Results

(1) (2) (3)
Postt × InaccessNj 0.744∗∗∗ 0.728∗∗∗ 0.738∗∗∗

(0.223) (0.247) (0.212)
Postt 0.00710 0.364 0.280

(0.316) (0.346) (0.395)

InaccessNj 0.723∗
(0.432)

R-Squared 0.253 0.270 0.168
Observations 3336 3026 3341
Year FE X X X
Zip FE X X
Incjt, Edujt, Popjt X
CBSA FE X
CBSA X Inaccess. X
CBSA X Post X

Notes: This table shows the estimates from Yjt = βInaccessNj ×Postt+yeart+zipj +εjt, in
column (1). Column (2) contains time-varying demographic controls. Column (3) removes
zipcode fixed effects and introduces inaccessible-by-time, inaccessible-by-city and city-by-
post dummies. Standard errors clustered by Cityc × Postct in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 7: Correlation between Different Inaccessibility Metrics

Transit Distance Wedge Driving
Transit 1
Distance 0.34 1
Wedge 0.84 0.29 1
Driving 0.13 0.18 0.00 1

Notes: This table shows the correlation between different InaccessNj metrics, depending on
the input origin-destination travel times matrix, in which travel time is one of: transit travel
time, geodesic distance, wedge (transit - driving) in travel time, and driving travel time.
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Table 8: Restaurant Net Creation by Inaccessibility Metric

(1) (2) (3) (4)
Transit Wedge Distance Drive

Postt × InaccessNj 0.744∗∗∗ 0.580∗∗ 0.507∗∗∗ 0.202
(0.223) (0.259) (0.155) (0.213)

Postt 0.00710 0.154 0.268 0.385
(0.316) (0.305) (0.307) (0.360)

R-Squared 0.253 0.252 0.252 0.251
Observations 3336 3336 3336 3341
Year FE X X X X
Zip FE X X X X

Notes: This table shows the estimates from Yjt = βInaccessNj × Postt + yeart + zipj + εjt,
with different metrics for constructing InaccessNj . All columns contain the same specification
as in column (1) of Table 6. Standard errors clustered by Cityc × Postct in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 9: Industry Net Creation Heterogeneity

(1) (2) (3)
Restaurants Dry Cleaners Dentists

Postt × InaccessNj 0.744∗∗∗ 0.143∗∗ 0.109
(0.0189) (0.223) (0.119)

Postt 0.007 -0.107 0.0240
(0.316) (0.140) (0.213)

R-Squared 0.253 0.143 0.171
Observations 3336 2504 3108
Year FE X X X
Zip FE X X X

Notes: This table shows the estimates from Yjt = βInaccessNj × Postt + yeart + zipj + εjt,
with different industries for Yjt. All columns contain the same specification as in column (1)
of Table 6, and use the public transit metric for inaccessibility. Standard errors clustered by
Cityc × Postct in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table 10: UberX Impact on HPI

(1) (2) (3)
Median Median Median

Postt -0.0594∗∗∗ -0.0495∗∗∗ -0.0662∗∗∗
(0.0207) (0.0137) (0.0239)

InaccessNj 0.675∗∗∗ 2.797∗∗
(0.0344) (1.318)

InaccessNj × Postt 0.0310∗∗∗ 0.0387∗∗∗
(0.00623) (0.0116)

InaccessRj 0.684∗∗∗ -2.136
(0.0264) (1.318)

InaccessRj × Postt 0.0191∗∗∗ 0.0219∗∗
(0.00670) (0.0106)

InaccessNj × InaccessRj × Postt -0.0291∗
(0.0151)

Observations 9926 9926 9926
Year FE X X X
Zip FE X X X

Notes: This table shows the quantile regression estimates from HPIjt = β1Inaccess
N
j ×

Postt + β2Inaccess
R
j × Postt + β3Inaccess

N
j × InaccessRj × Postt + yeart + zipj + εjt.

Standard errors clustered by Cityc × Postct in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table 11: UberX Impact on ZRI

(1) (2) (3)
Mean Mean Mean

Postt 0.00564 0.0102 0.00436
(0.0237) (0.0236) (0.0238)

InaccessNj 0.161∗∗∗ -0.00106
(0.0297) (0.00326)

InaccessNj × Postt 0.00962∗ 0.0157∗∗
(0.00499) (0.00601)

InaccessRj 0.165∗∗∗ 0.162∗∗∗
(0.0312) (0.0300)

InaccessRj × Postt 0.00379 0.0183∗∗
(0.00510) (0.00792)

InaccessNj × InaccessRj × Postt -0.0244∗∗∗
(0.00911)

R-Squared 0.774 0.774 0.775
Observations 39321 39321 39321
Year FE X X X
Zip FE X X X

Notes: This table shows the estimates from ZRIjt = β1Inaccess
N
j × Postt +

β2Inaccess
R
j × Postt + β3Inaccess

N
j × InaccessRj × Postt + yeart + zipj + εjt.

Standard errors clustered by Cityc × Postct in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table 12: Model Parameters

source
Parameter Estimation Calibration Value
ε̂τ pre X 0.17∗∗∗
ε̂τ post X 0.11∗∗∗
β X 0.30
ε X 8.00
τ̂pre 0.02
τ̂post 0.01

Notes: Calibrated parameters taken from literature, estimated parameters obtained via

estimating the travel equation, ln(ncj) = κc+ ln

(∑
i∈c I

c
i (e−ετm

c
ij)
)

+ ln(Ec
j ), using nonlinear

least squares for either pooled pre-period or pooled post-period data.

Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 13: Compensation ($’s) for Mean Homeowner, t = −1 to t = +2

Varied IAccess
N

i IInaccess
N

i WTPAccessN

i WTP InaccessN

i

Pre–period 7,814 6,485
Cost: τ̂ 6,996 5,783 818 702
Times & cost: m̂ij, τ̂ 7,251 6,051 563 434
Times, cost, house prices: m̂ij, τ̂ , q̂i 6,848 5,696 966 789
Full Model: m̂ij, τ̂ , q̂i, Êj 6,639 5,540 1178 945

Notes: This table shows that mean compensation and compensation change for resident
homeowners, by residential location restaurant-inaccessibility status.

Table 14: Compensation ($’s) for Mean Renter, t = −1 to t = +2

Varied IAccess
N

i IInaccess
N

i WTPAccessN

i WTP InaccessN

i

Pre–period 6,565 5,899
Cost: τ̂ 5,899 5,590 666 665
Times & cost: m̂ij, τ̂ 6,031 5,750 534 505
Times, cost, house prices: m̂ij, τ̂ , q̂i 6,290 6,005 275 250
Full Model: m̂ij, τ̂ , q̂i, Êj 6,098 5,861 467 394

Notes: This table shows that mean compensation and compensation change for resident
renters, by residential location restaurant-inaccessibility status.
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Figures

Figure 1: Share of Social & Recreational Trips by Taxi or Ridesharing, Central Origins
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Notes: This table shows the share of social and recreational trips originating within 5 miles
of a city center by taxi in the 2009 and 2017 NHTS confidential trip files, for public transit
heavy cities (New York City, San Francisco, Washington, DC, Boston, and Chicago) vs.
other cities. All trips originate at home, to maintain cross-wave comparability of 2009 and
2017 data. Central Origins are defined as those trips from home with a home census tract
identified as laying within a 5 mile radius of the city center.
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Figure 2: New York City and the Impact of UberX

Lyft UberPool
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Figure 3: Destination Zipcode Travel Index

(a) Zipcode A (b) Zipcode D

Notes: Panel (a) calculates the weighted average travel time from zipcodes B, C, and D
traveling to zipcode A. Panel (b) calculates the weighted average travel time from zipcodes
A, B, and C to zipcode D. Because the zipcodes differ in their populations, weighted average
travel times differ between A and D.
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Figure 4: Firm Inaccessibility Varies by City
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Notes: The left panel plots the distribution of restaurants (left vertical axis) by mN
j for

Philadelphia. The vertical gray line is the public transit time to cover half of all restaurants,
m̄N . The right panel shows the same information for Houston.

Figure 5: Temporal Variation in UberX Entry

Entry as of 2012 Entry as of 2013

Entry as of 2014 Entry as of 2015

Notes: The four maps plot the cities in which UberX enters for each year between 2012
and 2015. Blue circles denote current year is the entry year, red x’s denote that UberX
had already entered the city in a previous year.
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Figure 6: Testing Parallel Trends: Annual Restaurant Net Creation and Net Creation Rate

(a) Annual Net Creation
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Notes: The figure plots Yjt = ∑3
k=−3 βkInaccess

N
j × RelY eark + yeart + zipj + εjt. Yjt is

net restaurant creation in panel (a), and net creation rate in panel (b). Sample includes
19/34 cities to capture 3 years of post data in balanced panel. Standard errors clustered
by Cityc × Postct, 95% confidence intervals shown.

Figure 7: UberX Impact on HPI and ZRI in Inaccessible Areas

(a) HPI (median)
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Notes: Panel (a )shows the βt estimated from ZRIjt = Y eart + ∑τ=5
τ=−4{βτInaccessj ×

Y earτ} + Cityj × Y eart + ζj + εjt. Panel (b) shows the βt estimated from a quantile
regression for HPIjt = Y eart +∑τ=3

τ=−4{βτInaccessj × Y earτ}+ Cityc × Y eart + ζj + εjt.
ZRI uses monthly data, while HPI uses quarterly.
Robust standard errors shown for HPI. Standard errors clustered by Cityc × Postct for
ZRI. 95% confidence intervals shown.
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A Other App Adoption

As a final robustness check, it is important to consider other sources of variation in restau-

rant expansion over the time period. As shown in Davis et al. (2018), Yelp has become

a considerable source of restaurant information over the same time period as UberX’s en-

tries, although without the sudden availability associated with a stark entry date. As such,

disentangling information from access is a difficult endeavor. Ideally, one would include

time-varying city-wide controls for Yelp’s presence in the main specification, to control for

a cities’ changing information set. Controlling for Yelp’s presence at a more localized level

runs into issues of simultaneity bias, as the two on-line platforms likely amplify the impact

of the other in the post period. For example, we may be more likely to travel to a far flung

restaurant because we learned about it on-line (Yelp amplifying UberX). On the other hand,

we may be more likely to review a new restaurant in a far flung location once access has

improved (UberX amplifying Yelp).

As per Yelp’s updated terms of service, one “may not modify, reproduce, distribute,

create derivative works or adaptations of, publicly display or in any way exploit any of the

Yelp Content in whole or in part except as expressly authorized by us.” This limits my

ability to pull data from the site; however, Yelp has released a dataset of nearly 6 million

reviews for use by the general public. The data contains reviews, user information, and

business information for four of the 34 cities in the sample: Las Vegas, Phoenix, Pittsburgh

and Charlotte. Unfortunately, there is only one year of post data from Las Vegas, making

that city less useful for analysis. Figure F2 shows the share of yelp reviews in inaccessible

areas for Pittsburgh, Charlotte and Phoenix three years around UberX’s entry. While there

does seem to be an increase in the share in the post period, three cities’ worth of data is not

enough to do analysis similar to that in Equation 10. The small data size in combination

with the caveats that Yelp data can be manipulated by the reviewed establishments, which

often pay to solicit good reviews or remove bad ones, make the data a less than optimal

measure of information flow.

Motivated by the Yelp data concerns, we can look for economic rather than statistical

methods to test the information story. Consider two cities, one whose restaurant scene is
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tightly concentrated in the center of the city, city A, and another whose restaurant scene is

more dispersed about the city, city B. Residents of city A know a lot about the restaurant

scene in their city; since it is restricted to a small area, it is easy to walk around and find

places to dine. In city B, on the other hand, due to more dispersion, residents may only

be aware of small pockets of dining establishments. Assuming that Yelp provides a bigger

information change in dispersed cities, we would expect more restaurant net creation in

dispersed cities after UberX’s entry, all else equal. To test this hypothesis, I edit the main

specification, running it for each city of the 34 cities separately, including year and zipcode

fixed effects, as well as zipcode trends.

Figure F3 shows a scatter plot of the city-specific UberX impacts on inaccessible area

restaurant flow versus a measure of restaurant concentration. Restaurant concentration is

calculated as the share of land area required to cover 50% of the city’s restaurants in the 5

mile radius. A highly concentrated city has a low concentration measure, and a dispersed

city has a higher one. The results suggest a positive relationship between dispersion and

UberX’s impact (the overall point estimate for the stacked DID is 0.25). On average, a

city with 50% of it’s restaurants in 20% of its area would see 0.16 fewer additional outlying

restaurants added than a city with 50% of its restaurants in 30% of its area, though the

trend line in figure F3 is not statistically different from 0. These results suggest that while

information may play an important story, it cannot account for the restaurant dispersion in

the age of UberX.

Other platforms contributing to restaurant expansion include UberEats, Seamless (later

merged with Grubhub), Grubhub. These services bring food to residential locations, allowing

kitchens to locate in cheap areas and primarily make money from delivery orders. None of

these were launched concurrently with UberX. UberEats launched in March, 2016, while

Seamless and Grubhub launched in the mid-2000’s, so none can explain the kinked event

study estimated around UberX entry.
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B Travel Appendix

With UberX changing within-city accessibility, restaurants disperse. Still unknown is how

large this change in travel is that drives dispersion. To measure the change in travel, the

ideal data set would have national representation, utilize the staggered UberX entry, and

track individual trips to restaurants over time. In reality, travel data is much more limited.

Instead, we can look to a few sources of data that cover all of the desired characteristics.

Emissions data from the Environmental Protection Agency tracks emissions associated with

onroad vehicles (ORVs) daily for the entire sample of cities, though it lacks individual trip

accounts. The Taxi and Limousine Commission from New York City provides trip origin

and destination information for all taxi rides from 2009-2018, with ridesharing data added

in 2015. Finally, the confidential data for the National Household Travel Survey provides

trip diaries for survey participants in 2017.

The travel results should not be taken as sufficient evidence that people travel differently

using Uber. Without Uber data on trip counts between locations, we cannot test this

hypothesis; however, it is necessary to show that travel patterns have changed in the post

period as the distribution of activity has changed.

On-Road Vehicle Emissions

Changes in emissions give us an idea of how large the impact of UberX is on travel patterns;

after UberX enters, the restaurant results suggest that people switch from public transit

to driving. It is also possible that the wealth effect can induce more restaurant trips, as

traveling to restaurants has become cheaper, and hence more driving even in non-transit

cities.

Citywide Emissions Changes

To investigate the relationship between vehicle emissions and UberX’s entry, I estimate the

change in various emissions after UberX enters my suite of 34 cities, outlined in Equation

30.
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Yicd = α + βPostcd + ΓCityc + Y eard + Seasond + Trendc + εict (30)

Yicd is monitor level emissions for monitor i, in city c, on date d. Postcd is the city-

specific UberX entry date, set to 1 after entry and 0 in the pre-period. The design includes

city fixed effects to control for time-invariant city characteristics, Cityc, year fixed effects to

account for national policy changes, Y eard, and city-by-year trends to control for city level

developments in pollution policy, Trendc.

This equation exploits the staggered entry of UberX across the 34 cities and 4 time

periods to construct a stacked difference-in-difference. The assumption of parallel trends

requires that cities’ emissions output move similarly in their respective pre-periods. Since

cities differ in their emissions policies, I include city fixed effects and time trends; however,

all results are robust to dropping the city trends. Exogeneity of UberX entry requires that

UberX did not enter as it saw emissions changing.

I study carbon monoxide (CO) emissions as on road vehicles (ORV’s) contribute 48% of

all emissions, as shown in Table E9. As a placebo, I study the change in fine particulate

matter (FRM/FEM PM2.5), as ORVs contribute less than 2% of the total output.26 I use

data from the EPA’s Daily Outdoor Air Quality Data at the monitor level from 2009-2018.

Each monitor is identified by it’s latitude and longitude, which I reverse geocode to find

the associated zipcode. I then map these zipcodes to the appropriate cities in my sample.

All analyses is limited to non-exceptional event observations to remove observations during

wildfires or dust storms, for example.

Before implementing the regression in Equation 30, two important characteristics of the

data should be noted. Figure F4 panels (a) and (b) show that both pollutants are falling over

the treatment period, so controls for years and city-specific trends are necessary. Second,

panels (c) and (d) show there is a high degree of seasonality masking this overall negative

trends in emissions. All regressions must control for the season of each date. Since these

seasons are tied to weather, they differ from the traditional definitions of annual quarters,
26These two pollutants represent the largest differences in source share excepting S02: 48.41 vs. 4.5 and 1.79
vs. 17.34 for ORV vs. Industry/Electricity. While the source share difference for S02 is larger than for
PM2.5, it contributes to PM2.5 formation and PM2.5 has been studied more often in the economic
literature.
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offset by one month.

An additional background note on emissions in the USA over 2009-2018, fracking has

changed the way utilities choose their inputs. As shown in figure F5, the median state used

coal for around 80% of its energy generation in 2009m1. After fracking reduced the relative

cost of natural gas, utilities substituted gas for coal. By 2018m, the median state used

coal for closer to 50% of its energy generation. Natural gas is notably cleaner than coal to

burn, and should result in large declines in particulate matter. At the same time, since it

is cheaper, it may lead to consumers using more energy as their utility bills fall. In either

case, controlling for the ratio of inputs as well as the level of energy generation is important,

especially as utilities contribute much of the total volume of PM 2.5 in the atmosphere.

Table E10 show the results of regressing various CO measures on a city-specific post

period indicator. The analysis includes year fixed effects to control for national changes in

CO policy, city trends to control for differing trajectories induced by local policies, city fixed

effects to control for time-invariant city characteristics correlated with emissions production,

and season fixed effects to control for emissions’ sensitivity to weather patterns. The CO

measurements are limited to the 8-hour daily averages. Column (1) shows that the average

CO measure increases by 11.5% after UberX enters. Columns (2)-(3) add the state-by-month

controls, ratio and level of inputs used, to capture the advent of the fracking boom. Because

automobiles have not changed their fuel usage due to fracking, and utilities do not contribute

much to CO levels, there is no statistical relationship between the fracking measures and

CO output, as expected. Finally, we can control for monitor level fixed effects, to control for

highly localized characteristics, such as airports or heavy industry, that might be correlated

with the way people travel within cities. The results remain robust, varying between 9 and

11.8% rise in CO emissions after UberX entry.

Table E11 show the results of regressing ln(PM2.5) on a city-specific post period indi-

cator. The analysis includes year fixed effects to control for national changes in CO policy,

city trends to control for differing trajectories induced by local policies, city fixed effects

to control for time-invariant city characteristics correlated with emissions production, and

season fixed effects to control for emissions’ sensitivity to weather patterns. The PM 2.5

measurements are limited to the 24-hour daily averages. Column (1) shows that the average
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PM 2.5 measure increases by 0.9% after UberX enters, though this is insignificant. Columns

(2)-(3) add the state-by-month controls, ratio and level of energy inputs used, to capture

the advent of the fracking boom. As suggested in the fracking discussion, these variables

predict Pm 2.5 emissions well, especially the ratio of coal used in inputs. Finally, we can

add monitor level fixed effects, to control for highly localized characteristics, such as airports

or heavy industry, that might be correlated with the way people travel within cities. The

results remain robust, varying between 0.3 and 1% rise in CO emissions after UberX entry,

statistically not differentiated from zero.

Figure F6 plots the quarterly event studies. Since UberX enters the cities on 34 different

dates, entry quarter is normalized to 0, allowing cities before entry to control for themselves

post entry, as well as other cities in which UberX has entered. Panel (a) shows that CO

emissions increase in the post period, while panel (b) show that the placebo emission, PM

2.5, sees little change driven by UberX entry and in fact continues to fall in line with the

raw time series plots.

Within City Emissions Changes

We can also look within cities to check whether localized emissions have changed. Due to

data availability, analysis is limited to 12/34 cities. Additionally, because pollutants move

around in the air, it is harder to distinguish inaccessible air from accessible air, introducing

noise into the within-city analysis. If more trips are taken to inaccessible locations, we should

see an increase in localized emissions in the zipcodes defined to be inaccessible. Equation 31

shows the estimation strategy, analogous to the main specification in Equation 10, but with

more seasonal controls.

Yicd =δInaccessNic + αPostcd + ΓCityc + βInaccessNic × Postcd+

ΛCityc × Y earcd + ΨInaccessNic × Cityc + Seasond + εict

(31)

β measures the percent change in emissions in the post period in inaccessible zipcodes

above their peer accessible zipcodes. Due to local dispersion of emissions, this measure

may be muddied and mis-measured across zipcodes, introducing noise to the highly local

measures, biasing β downwards and also measuring it less precisely. Additionally, most
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cities do not have monitors in both types of locations, limiting my sample to only 12 of the

original 34 cities.

Table E12 shows the differential growth in emissions for inaccessible zipcodes. As shown

in the second row, the impact of being in the post period remains at 10-11% increase in

citywide emissions, in line with the citywide results. The first row of the table implies that

inaccessible zipcodes saw an additional 8-9% increase in emissions, though this is noisily

estimated due to the drop in sample coverage.

We can do some back-of-the-envelope calculations to estimate the magnitude of this

change in emissions. The Clean Air Act (CAA) legislation originally passed congress in

1963, and was updated in 1970 and 1977 greatly expanding the federal government’s role in

controlling air pollution. In 1990, the EPA adopted a set of major amendments (CAAA)

which provide the current legal authority for federal programs relating to air pollution today.

In 2011, the EPA produced a report analyzing air pollution emissions under the CAA relative

to their projected emissions had the 1990 CAA amendments not been introduced. In this

report, the EPA projected that without the CAAA carbon monoxide emissions would have

been 80.5 million tons in 2010. With CAAA, actual emissions were 42 million tons, a

reduction of 48%. If this were to be distributed uniformly across the US, so that each city

realized a 48% drop in projected CO emissions, the increase in driving in the post period

undoes a significant fraction of the CAAA reduction: the estimates in table E10 show the

rise in CO is between 1/4th and 1/5th the magnitude of the CAAA decline. Since 48% of

CO emissions come from on-road vehicles, it is likely that changes in travel patterns, for

example switching from public transit to shared cars, is driving the increase in emissions.

Changing Taxi Trips in New York City

The second piece of evidence supporting travel pattern changes uses data from the NYC Taxi

and Limousine Commission. If UberX, and later UberPOOL, has changed the distribution

of amenities in cities, we might also expect the types of trips taken by a close substitute to

Uber, yellow cabs, to also have changed as people travel to new and different destinations.

94% of trips in the data originate in Manhattan, which has always had a thick supply of

travel options; other boroughs have historically had trouble attracting personalized transit
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in the form of yellow cabs. This means that yellow cabs are good substitutes for Ubers in

Manhattan. If UberX has opened up new destinations to travelers in NYC, we expect yellow

cabs to make trips to less accessible locations more often as Manhattanites travel farther

than before, knowing they can get back to Manhattan with an Uber. More generally, taxis

co-locate with economic activity; if the distribution of economic activity has changed, taxis

should follow suit.

For data from 2009-2016, TLC provided pick-up and drop-off location latitude and lon-

gitude for all yellow cab trips. They introduced for-hire-vehicle trip details in 2016, but did

not include pick-up and drop-off latitude and longitude, only pick-up and drop-off zones,

which are not conformable with my zipcode treatment sample definition. As such, I limit

study to yellow cab trips. I collect data for the month of January each year from 2009 to

2016, and reverse geocode the pick-up and drop-off locations of every trip by looking for the

correct zipcode polygon encompassing each location. Not all latitudes and longitudes can

be matched to a zipcode, but this yields a sample of 109,600,392 trips across 56,571 zipcode

pairs from 934 pick-up zipcodes and 938 drop-off zipcodes. I then collapse the number of

trips by zipcode pair, and merge in my zipcode treatment definitions for both pick-up and

drop-off zipcodes. Because my treatment variable only assigns treated or untreated to zip-

codes within 5 miles of a city center, many of my zipcode pairs are dropped from the sample.

This leaves me with 68,322,472 trips across 2,787 zipcode pick-up drop-off pairs over 7 years.

I estimate the change in number of trips being picked up in an inaccessible location,

dropped off in an inaccessible location, or being both picked-up and dropped off in inacces-

sible locations by yellow cabs over time, as in Equation 32.

ln(tripsijt) = Y eart + Inaccessi + Inaccessj + Inaccessi × Inaccessj+

β1(t)Inaccessi × Y eart + β2(t)Inaccessj × Y eart+

β3(t)Inaccessi × Inaccessj × Y eart + linkij + ηijt.

(32)

Every observation is characterized by a pick-up location, i, a drop-off location, j, and

a year in the sample, t. β1(t) measures the additional percentage of trips originating in

inaccessible locations for each year t relative to those originating in accessible locations. β2(t)

measures the additional percentage of trips ending in inaccessible locations for each year t,
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relative to trips ending in accessible locations. β3(t) measures the additional percentage of

trips originating and ending in inaccessible locations for each year t. linkij is a route fixed

effect, effectively controlling for the distance between any two routes. Positive coefficients

on each of the three β′s imply that yellow cabs travel more to, from, or between inaccessible

locations after UberX entry than to, from, or between accessible locations; in short, they

measure travel dispersion in the post period using a service substitutable for an Uber. Figure

F8 plots the coefficients over time, with 2012 as the base year, the year UberX entered NYC.

Vertical lines are dropped at 2012.75, when UberX entered NYC, and 2015, when UberPool

entered. We see that, after UberX entry, pick-ups in inaccessible locations increased by

approximately 14% on average in the post period, with no discernible pre-trend. Panel (b)

shows that drop-offs in inaccessible locations also increased, by about 9.5% in the post-

period. Finally, trips between farflung areas are the last to respond, only increasing once

UberPOOL enters.

The results suggest that because yellow cabs historically have primarily been available

in Manhattan, riders found it hard to venture into outer boroughs far from public transit

lines. After UberX’s entryWith UberX’s introduction, riders are free to travel to locations

underserved by taxis and public transit, knowing they can hail an Uber home.

Both the EPA daily emissions data and the NYC TLC data support the hypothesis that

city residents travel differently after UberX enters cities. The emissions data show that

emissions rise, consistent with taking longer trips by car or by taking more trip by car (the

wealth effect), or by switching from public transit to cars (substitution effect). On top of

the EPA findings, the NYC TLC data show that people are more likely to travel to and from

transit inaccessible locations in the post period, suggesting movement away from using the

subway or bus lines and towards personalized public transit. As people change their travel

patterns, firms are more willing to locate in these far flung locations, perpetuating more

trips to these locations over time. Putting the restaurant results together with the NYC

TLC and EPA results implies that a 9-14% increase in travel to inaccessible areas is needed

for a 6% (0.25/4.48) increase in restaurant stock, relative to their accessible peers.
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C Consumer Theory Appendix

We need to know the spatial distribution of utilities in order to find the maximum trip ij

utility for a given residence, i.

Given than zij is Frechet distributed, V will also be Frechet distributed as it is a monotone

combination of the consumption index,
(hi
β

)β(ci
α

)α( ni

1− α− β

)1−α−β 1
eτmij

, with the Frechet

component, zij.

Taking

V =
Iizij

eτmijqβi p
α

solve for zij:

zij =
V eτmijqβi p

α

Ii
(33)

Define the distribution of utilities for trips along ij as follows:

Gij(v) = P (V ≤ v) = F
(veτmijqβi pα

Ii

)
= e−Ej(e

τmij qβi p
α)−εIεi v

−ε = e−Φijv−ε (34)

where

Φij = Ej(eτmijqβi pα)−εIεi (35)

then the associated p.d.f. is

gij(v) = Φijεv
−ε−1e−Φijv−ε (36)

With the distribution of local utilities in hand, we can calculate the probability that a

resident chooses trip ij over all other trips {is,∀s}. Since this is a binary choice between

any two trips, P (choose ij) = E(choose ij).

ρNij = P (choose ij) = E(choose ij) =
∫ ∞

0
gij(v)

∏
s 6=j

Gis(v)dv (37)
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where the first term in the integral is the p.d.f. of the indirect utilities, while the second

term is the probability that j is the best destination from i among the set of destinations, s.

ρij =
∫ ∞

0
Φijεv

−ε−1e−Φijv−ε ∏
s 6=j

e−Φisv−ε
dv (38)

=
∫ ∞

0
Φijεv

−ε−1∏
s

e−Φisv−ε
dv (39)

=
∫ ∞

0
Φijεv

−ε−1e−v
−ε
∑

s
Φisdv (40)

=
∫ ∞

0
Φijεv

−ε−1e−v
−εΦidv (41)

Note that
d

dv

− 1
Φi

e−Φiv−ε

 = εv−ε−1e−Φiv−ε , then

ρNij =
∫ ∞

0
Φij

d

dv

− 1
Φi

e−Φiv−ε

dv (42)

= Φij

− 1
Φi

e−Φiv−ε

v=∞

v=0

(43)

= Φij

 lim
v→∞

−
1
Φi

e−Φiv−ε + lim
v→0
−

1
Φi

e−Φiv−ε

 (44)

= Φij

0 +
1
Φi

 (45)

ρNij =
Φij

Φi

(46)

=
Ej(eτmijqβi pα)−εIεi∑
sEs(eτmisqβi pα)−εIεi

(47)

=
Ej(eτmij)−ε∑
sEs(eτmis)−ε

(48)

(49)

Now we have the probability of taking trip ij coming from location i.
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D NHTS Appendix

The model does not embed a layer of travel mode choice. Instead, we can construct mij =

ηmdrive
ij + (1− η)mtransit

ij , where η is the share of trips taken via driving. These trips include

personal vehicles, taxis, and ridesharing. Transit trips include those by any form of public

transportation.

In order to calculate the share of trips driven, we can look to the National Household

Travel Survey (NHTS). The NHTS is conducted every 8 years, the most recent two years

being 2009 and 2017, which bookend the pre- and post-ridesharing era. Using data from

the two surverys separately yields an ηpre and an ηpost. Furthermore, the survey identifies

the CBSA in which the trip takes place, providing city-level variation in the shares, ηprec and

ηpostc .

To calculate the relevant ηprec and ηpostc , I use data for all home based social and recreation

trips in 31/34 of the cities in my main sample.27 I classify trips taken via car, suv, van, pickup

truck, motorcycle, or rental car as driving trips; trips via public bus, commuter rail, subway,

elevated rail, light rail or street car as transit trips; and trips via taxi, Uber or Lyft as

ridesharing/taxi trips. Driving share, ηtc, is the sum of driving and taxi/ridesharing trips

over all trips. Table 1 shows the breakdown of all trips in the sample by travel mode and

year. Over the two periods, driving in personal cars declined, while taxi/ridesharing use and

public transit increased. Regardless of period, nationally, we are a nation of personal cars.

The table shows the equilibrium ηt; we need the shares due to ridesharing’s entry, exoge-

nous to any other changes in travel patterns. To get closer to exogenous driving shares, η̂tc,

we can run the simple difference of city-level shares on a post dummy and use the predicted

values. This long-difference specification assumes no other changes to the transportation

landscape than the introduction of ridesharing. This yields mijt = η̂tcm
drive
ij + (1− η̂tc)mtransit

ij

27Colorado Springs, CO, Santa Barbara, CA and Tucson, AZ are missing in the NHTS survey. I use Denver,
CO data for Colorado Springs, Los Angeles data for Santa Barbara, and Phoenix data for Tucson.
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E Appendix Tables

Table E1: List of Subway and Light Rail Systems by City

City name Subway Lightrail OnlyBus
Atlanta MARTA X X
Baltimore Maryland Transit Administration X X
Boston MBTA X X
Charlotte CATS: Blue and Gold Lines X
Chicago Chicago "L" X
Cincinnati Bell Connector X
Colorado Springs X
Dallas DART X
Denver Denver RTD X
Detroit Q-Line, People Mover X X
Houston METRORail X
Kansas City KC Streetcar X
Las Vegas Monorail X
Los Angeles Metro Rail X X
Miami Metrorail X
Minneapolis METRO Light Rail X
New York MTA X
Orlando X
Philadelphia SEPTA X X
Phoenix Valley Metro Rail X
Pittsburgh The T X
Portland MAX Light Rail X
Raleigh X
Riverside RTA X
Sacramento Sacramento RT Light Rail X
San Antonio X
San Diego San Diego Trolley X
San Francisco BART X X
Santa Barbara X
Seattle Central Link X
St. Louis MetroLink X
Tampa TECO Streetcars X
Tucson Sun Link X
Washington DC Metro X X
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Table E2: 2010 ACS Public Transit Commuting Shares

CIty Fraction Transit
New York 0.305
San Francisco 0.146
Washington DC 0.139
Boston 0.119
Chicago 0.114
Philadelphia 0.0932
Seattle 0.0820
Baltimore 0.0627
Portland 0.0617
Los Angeles 0.0609
Pittsburgh 0.0578
Denver 0.0463
Minneapolis 0.0463
Santa Barbara 0.0378
Miami 0.0368
Las Vegas 0.0364
Atlanta 0.0336
San Diego 0.0330
Sacramento 0.0268
St. Louis 0.0258
Houston 0.0257
Tucson 0.0251
Cincinnati 0.0244
San Antonio 0.0224
Phoenix 0.0221
Charlotte 0.0201
Orlando 0.0171
Riverside 0.0159
Dallas 0.0156
Detroit 0.0150
Tampa 0.0138
Kansas City 0.0127
Colorado Springs 0.0124
Raleigh 0.00905

Notes: This table shows the share of surveyed commuters in each city that commute via pub-
lic transit, defined as hc04_est_vc01/hc01_est_vc01 from the 2010 ACS 5-year estimates,
from table S0802.
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Table E3: Restaurant Net Creation: Transit vs. Driving Inaccessible Locations

(1) (2) (3)
Postt× InaccessN,transj × InaccessN,drivej -0.179 -0.290 -0.325

(0.415) (0.494) (0.498)

Postt× InaccessN,drivej 0.238 0.318 0.332
(0.443) (0.502) (0.443)

Postt × InaccessN,transj 0.822∗∗∗ 0.859∗∗∗ 0.900∗∗∗
(0.230) (0.245) (0.284)

InaccessN,transj × InaccessN,drivej 0.109
(0.435)

InaccessN,transj 0.682
(0.411)

InaccessN,drivej 0.308
(0.608)

Postt -0.124 0.191 -0.0620
(0.420) (0.432) (0.359)

R-Squared 0.253 0.270 0.173
Observations 3336 3026 3341
Year FE X X X
Zip FE X X
Inc, Edu, Pop X
CBSA FE X
CBSA X Inaccess. X
CBSA X Post X

Notes: This table shows the estimates from Yjt = βInaccessNtransj ×InaccessNdrivej ×Postt+
γInaccessNtransj ×Postt+δInaccessNdrivej ×Postt+yeart+zipj+εjt. All columns contain the
same specification as in column (1) of Table 6. Standard errors clustered by Cityc × Postct
in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table E4: Restaurant Net Creation Results: Disaggregated Panel by Size Category

(1) (2) (3) (4)
Postt× InaccessNj 0.246∗∗∗ 0.248∗∗∗ 0.205∗ 0.243∗∗∗

(0.0698) (0.0696) (0.117) (0.0764)

InaccessNj 0.241∗
(0.142)

Postt 0.0935 0.00237 -1.025∗∗∗ 0.121
(0.130) (0.0985) (0.244) (0.107)

R-Squared 0.0407 0.0567 0.0814 0.0607
Observations 10023 10023 10023 9084
Year FE X X X X
Zip FE X X X
Zip Trend X
Incjt, Edujt, Popjt X

Notes: This table uses a zipcode by year by employment class size panel, instead of a zipcode
by year panel as in the main results. This table shows the estimates from Yict = δInaccessic+
αPostct + ΓCityc + βInaccessic × Postct + ΛCityc × Postct + ΨInaccessic ×Cityc + εict, in
column (2). Additional columns control for zipcode fixed effects, ζic, zipcode trends, ζic× τ ,
and year fixed effects, τt from Equation 10 in the text. As a final check, column (4) uses
demographic characteristics instead of zipcode level trends to control for changing residential
composition patterns. Standard errors clustered by Cityc × Postct in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table E5: Restaurant Net Creation Results: Different City Radii

(1) (2) (3) (4) (5) (6)
5 mi. 6 mi. 7 mi. 8 mi. 9 mi. 10 mi.

Postt × InaccessNj 0.744∗∗∗ 0.397∗∗ 0.364∗∗ 0.290∗∗ 0.211∗ 0.144
(0.223) (0.196) (0.169) (0.139) (0.124) (0.0996)

Postt 0.00710 0.455∗∗ 0.472∗∗ 0.386∗∗ 0.426∗∗∗ 0.357∗∗∗
(0.316) (0.220) (0.183) (0.164) (0.145) (0.134)

R-Squared 0.253 0.244 0.240 0.238 0.231 0.225
Observations 3336 4313 5228 6200 7280 8417
Year FE X X X X X X
Zip FE X X X X X X

Notes: This table shows the estimates from Yjt = βInaccessNj × Postt + yeart + zipj + εjt,
with the sample covering zipcodes in increasingly wider city radii. Results from specification
as in column (1) of Table 6, and use the public transit inaccessibility metric. Standard errors
clustered by Cityc × Postct in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table E6: Restaurant Net Creation Results: Dose Response Design

(1) (2) (3)
Postt× mN

j 0.0161 0.0137 -0.00417
(0.0101) (0.0111) (0.0127)

Postt -0.198 0.279 1.367∗
(0.480) (0.547) (0.686)

mN
j -0.0305∗∗∗

(0.0115)
R-Squared 0.251 0.268 0.168
Observations 3375 3052 3341
Year FE X X X
Zip FE X X
Inc, Edu, Pop X
CBSA FE X
CBSA X Inaccess. X
CBSA X Post X

Notes: This table shows the estimates from Yjt = βmN
j × Postt + yeart + zipj + εjt, where

mN
j is the average public transit time to destination j for the average city resident. Results

from specification as in column (1) of Table 6. Standard errors clustered by Cityc × Postct
in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table E7: Restaurant Net Creation Results: Binned Dose Response Design

(1) (2) (3)
Postt× 2.InaccessNj -0.0442 -0.412 -0.0743

(0.301) (0.392) (0.273)

Postt× 3.InaccessNj 1.517∗∗∗ 1.174∗∗∗ 1.486∗∗∗
(0.263) (0.324) (0.245)

Postt× 4.InaccessNj 1.322∗∗∗ 1.105∗∗∗ 1.292∗∗∗
(0.331) (0.403) (0.306)

Postt× 5.InaccessNj 0.891∗∗ 0.622 0.874∗∗
(0.357) (0.423) (0.334)

Postt -0.327 0.283 -0.186
(0.359) (0.424) (0.326)

2.InaccessNj 1.051
(1.056)

3.InaccessNj 1.021
(0.695)

4.InaccessNj 0.674∗∗∗
(0.238)

5.InaccessNj 0.527∗∗
(0.249)

R-Squared 0.258 0.274 0.202
Observations 3336 3026 3341
Year FE X X X
Zip FE X X
Inc, Edu, Pop X
CBSA FE X
CBSA X Inaccess. X
CBSA X Post X

Notes: This table shows the estimates from Yjt = ∑5
k=2 βkInaccess

N
j (k) × Postt + yeart +

zipj + εjt, where InaccessNj (k) is the quintile of restaurant inaccessibility. Results from
specification as in column (1) of Table 6. Standard errors clustered by Cityc × Postct in
parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table E8: Restaurant Net Creation Results: Not limited to public transit heavy cities

(1)
Postt× InaccessNj 0.637∗∗

(0.245)

Postt× Top5j 0.198
(0.482)

Postt× InaccessNj × Top5j 0.328
(0.692)

Postt 0.0756
(0.332)

R-Squared 0.253
Observations 3336
Year FE X
Zip FE X

Notes: This table shows the estimates from Yjt = βInaccessNj × Postt + γTop5j × Postt +
δβInaccessNj × Top5j × Posttyeart + zipj + εjt, where Top5j identifies the top 5 cities for
public transit usage, as defined in Table E2. Results from specification as in column (1) of
Table 6. Standard errors clustered by Cityc × Postct in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table E9: EPA Air Quality Pollutants in 2010: Pollution Sources

Pollution Source VOC NOx CO SO2 PM10 PM2.5 NH3
% of total output

On-Road Vehicles 18.04 31.87 48.41 0.29 0.74 1.79 7.92
Industry/Electricity 10.27 30.91 4.5 81.4 5.99 17.34 4.14

Notes: This table shows the output of carbon monoxide (CO) due to different pollution
sources, and the share of total output in 2010. Author’s calculations use data from exhibit
1-7, “Summary of National (48 state) Emission Estimates by Scenario Year” in the report
“Emissions Projections for the Clean Air Act Second Section 812 Prospective Analysis,”
February, 2011. Prepared for the Office of Air and Radiation at the U.S. EPA. Prepared
by Industrial Economics, Inc. and E.H. Pechan & Associates, Inc. under EPA contract no.
EP-D-04-006.
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Table E10: Citywide UberX Impact on Carbon Monoxide Emissions

(1) (2) (3) (4)
ln(Mean CO) ln(Mean CO) ln(Mean CO) ln(Mean CO)

Postcd 0.114∗∗∗ 0.114∗∗∗ 0.117∗∗∗ 0.0920∗∗∗
(0.0339) (0.0323) (0.0329) (0.0280)

FractionCoalsm -0.250 -0.253 0.194
(0.247) (0.246) (0.152)

GasGensm -0.00774 -0.00419
(0.00834) (0.00810)

R-Squared 0.179 0.184 0.184 0.348
Observations 442354 423724 423724 423724

Stacked DiD Controls
CBSA FE X X X
CBSA Trend X X X X
Year FE X X X X

Additional Controls
Season X X X X
Monitor X X
Notes: This table shows the estimates from Yicd = βPostcd + Cityc + Y eard +
Trendc + Seasond + εicd. Standard errors clustered by city and post-period.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table E11: Citywide UberX Impact on PM 2.5 Emissions

(1) (2) (3) (4)
ln(Mean PM 2.5) ln(Mean PM 2.5) ln(Mean PM 2.5) ln(Mean PM 2.5)

Postcd 0.00539 0.00605 0.00419 -0.000782
(0.0156) (0.0156) (0.0164) (0.0175)

FractionCoalsm 0.0457 0.0220 0.316∗∗∗
(0.0774) (0.0668) (0.0907)

GasGensm 0.0273∗∗∗ 0.0353∗∗∗
(0.00343) (0.00432)

R-Squared 0.116 0.116 0.120 0.156
Observations 302066 300290 300290 300289

Stacked DiD Controls
CBSA FE X X X
CBSA Trend X X X X
Year FE X X X X

Additional Controls
Season X X X X
Monitor X X
Notes: This table shows the estimates from Yicd = βPostcd+Cityc+Y eard+Trendc+Seasond+
εicd. Standard errors clustered by city and post-period.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table E12: Within-City Results for CO

(1) (2) (3) (4)
ln(Mean CO) ln(Mean CO) ln(Mean CO) ln(Mean CO)

post=1 × Innaccessible=1 0.0917 0.0906 0.0915 0.0873
(0.100) (0.0793) (0.0795) (0.0776)

post=1 0.116 0.112 0.105 0.108
(0.0873) (0.0823) (0.0807) (0.0795)

R-Squared 0.360 0.354 0.355 0.376
Observations 71112 70230 70230 70230

Stacked DiD Controls
CBSA FE X X X
CBSA X Year X X X X
CBSA X Access X X X X

Additional Controls
Year FE X X X X
Season FE X X X X
Zip FE X X X
Zip Trend X X X X
Monitor FE X

Fracking Controls
Fraction Coal X X X
Gas Gen. X X

Table E13: Within-City Results for PM25

(1) (2) (3) (4)
ln(Mean PM 2.5) ln(Mean PM 2.5) ln(Mean PM 2.5) ln(Mean PM 2.5)

post=1 × Innaccessible=1 -0.0150 -0.0143 -0.0169 -0.0168
(0.0210) (0.0243) (0.0247) (0.0245)

post=1 0.0275 0.0290 0.0415 0.0415
(0.0532) (0.0566) (0.0559) (0.0558)

R-Squared 0.129 0.130 0.139 0.140
Observations 43416 42453 42453 42453

Stacked DiD Controls
CBSA FE X X X
CBSA X Year X X X X
CBSA X Access X X X X

Additional Controls
Year FE X X X X
Season FE X X X X
Zip FE X X X
Zip Trend X X X X
Monitor FE X

Fracking Controls
Fraction Coal X X X
Gas Gen. X X
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F Appendix Figures

Figure F1: No Evidence of Neighborhood Sorting in InaccessNj Zipcodes
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Notes: The figure plots Yjt = βInaccessNj × Postt + yeart + zipj + εjt. Yjt is population
change, change in fraction of population with at least a bachelor’s degree, or change median
income in a zipcode.
95% confidence intervals shown.
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Figure F2: Share of Yelp Reviews in Inaccessible Areas
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Notes: This figure shows the raw share of all Yelp reviews in restaurant inaccessible zip-
codes in Pittsburgh, Phoenix and Charlotte around the 3 years of UberX’s entry into each
city.

Figure F3: City Level UberX Impact by Restaurant Concentration
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Linear fit included, slope not significantly different from 0.
All weighted by number of zip codes in each city.

Notes: This figure shows the βct estimated from city level regressions of specification
10, including year and zipcode fixed effects, scattered against a measure of restaurant
concentration. Restaurant concentration is defined as the share of a city’s geographic area
within 5 miles of the center required to cover half of the city’s restaurants. The trend lines
regresses the βct’s on restaurant concentration, and cannot be differentiated from 0.
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Figure F4: Time Series of Pollutants
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(b) Annual Average, ln(PM2.5)
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(c) Daily Mean ln(CO)

ln(PM2.5) falls -0.024 per year
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(d) Daily Mean ln(PM2.5)

Notes: Panel (a) plots monitor level daily CO 8-hour arithmetic means, averaged annually
for the 34 cities in the sample. Panel (b) plots monitor level daily PM25 24-hour arithmetic
means, averaged annually for the 34 cities in the sample. Panels (c) and (d) plot the annual
point estimates from

Yicd = βyrelative_yearcd + Cityc +Quarterd + Seasond + Trendc + εict

standard errors clustered by and post-period, 95% confidence intervals shown, panel (c)
plots for ln(CO) and panel (d) plots for ln(PM2.5). Data from the EPA’s daily AQI data.
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Figure F5: Electricity Generation Inputs
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Notes: This figure shows the distribution of fraction coal used in electricity generation,
Coalsm

(Coalsm+Gassm) , over the 50 U.S. states. The figure compares the distributions for 2009m1
to 2018m12. State, s, by month, m, data on coal and gas generation obtained from the
U.S. Energy Information Administration.
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Figure F6: Citywide Event Study: ln(CO) and ln(PM2.5)
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Notes: Panel (a) Plots the monthly point estimates from ln(CO)icd =
βqrelative_quartercd + Cityc + Monthd + Seasond + Trendc + εict standard errors
clustered by and post-period, 95% confidence intervals shown. Panel (b) Plots the
quarterly point estimates from ln(PM2.5)icd = βqrelative_quartercd + Cityc + Y eard +
Seasond + Trendc + GasGenicd + FracCoalicd + εict standard errors clustered by and
post-period, 95% confidence intervals shown. Panel (b) uses year fixed effects instead of
month fixed effects, which are collinear with the β’s.
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Figure F7: Within-City Event Study: ln(CO) and ln(PM2.5)
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Notes: Panel (a) Plots the monthly point estimates from ln(CO)icd =
βqrelative_quartercd + Cityc + Monthd + Seasond + Trendc + εict standard errors
clustered by and post-period, 95% confidence intervals shown. Panel (b) Plots the
quarterly point estimates from ln(PM2.5)icd = βqrelative_quartercd + Cityc + Y eard +
Seasond + Trendc + GasGenicd + FracCoalicd + εict standard errors clustered by and
post-period, 95% confidence intervals shown. Panel (b) uses year fixed effects instead of
month fixed effects, which are collinear with the β’s.
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Figure F8: Changing Pick-up and Drop-Off Locations in the UberX Era in NYC
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(b) Drop-offs in Inaccessible Locations, β2(t)
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(c) Both in Inaccessible Locations, β3(t)

Notes: The panels plot the event study for ln(tripsijt) = Y eart + Inaccessi + Inaccessj +
Inaccessi×Inaccessj+β1(t)Inaccessi×Y eart+β2(t)Inaccessj×Y eart+β3(t)Inaccessi×
Inaccessj × Y eart + ηijt. Vertical lines are dropped at 2012 and 2015, when UberX and
UberPool were introduced.
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Figure F9: UberX Impact on mean HPI in Transit Inaccessible Areas
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Notes: This table shows the βt estimated from HPIict = Y eart + ∑τ=3
τ=−4{βτInaccessic ×

Y earτ} + Cityc × Y eart + ζic + εict. Standard errors clustered by Cityc × Postct. The
shaded area denotes 95% confidence intervals.
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