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In financial markets, forward contracts reflect market perception of future price

dynamics. Nontransparent markets, like commercial real estate investments, lack

such tools. We use a panel of NYC office leases between 2005 and 2016 to estimate
a dynamic term structure of forward lease rates (rental revenues), which reflects

changing expectations by tenants and landlords about future rental contract condi-

tions. Our imputed term structure is time-varying, generally upward-sloping, and
often exhibits an inverted-U shape. We also find that shocks to forward lease rate

dynamics are initially most keenly felt in the long-dated lease market and are sub-

sequently transmitted to the short-term lease market. Moreover, consistent with an
inefficient informational market, the leasing market takes multiple quarters to fully

price the impact of an unanticipated event. Beyond shedding new light on rental
market dynamics, our model can be used to quantify risk and reward for real es-

tate strategies. To illustrate this, we examine the financial viability of a nascent

“long”-“short” space market strategy commonly used by coworking providers in the
last business cycle.

JEL: R33, G12, G17
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According to Savills’ “Around the World in Dollars and Cents (2016)”, the aggre-
gate value of commercial real estate (CRE) that could potentially attract insti-
tutional investors is commensurate in size with the bond market. Leases in CRE
determine CRE cash flow and are therefore fundamental to the operation and
valuation of CRE assets. Importantly for our purposes, the collection of newly
executed lease agreement at any given time represents, among other things, the
market’s assessment of the current and anticipated price of space (per unit time).
This is the main object of study in this paper.

We seek to characterize the dynamics of the term structure of “the price of
space” over the business cycle, much in the way that one might refer to the term
structure of any other commodity, currency, or interest rate. We view a lease
contract, after accounting for idiosyncratic characteristics, as essentially a bundle
of forward contracts on space (i.e., property square footage). Correspondingly,
leases of various maturities originated at roughly the same time can be used
to back out a term structure of lease forward rates (e.g., today’s contract price
that would be paid in five years in exchange for one month’s use of one SqFt).
We contribute to the literature on property markets by studying leases from an
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approach that, to the best of our knowledge, has yet to be explored.
Using data from CompStak for New York City (NYC) over the period 2005-

2016, we employ a Kalman filter to back out spot, 5-year, and 10-year key lease
rates. The spot rate should be interpreted as the month-to-month price per square
foot for an average tenant. Correspondingly, the 5-year lease rate as determined
at date t should be interpreted as the price at which an average tenant could
lock-in one square foot of space for one month starting at date t + 5. CRE
commonly categorizes spatial quality bundles by “Class”. We focus in our study
on gross leases for Class A (highest quality) office space, and provide a separate
analysis for Class B office. We also control for lease stipulations such as tenant
improvement allotments, free rent concessions, and rent escalations. Because of
insufficient data, we do not control for tenant credit or lease renewals, but we do
address this shortcoming in a discussion section.

Our methodology leads to several novel and interesting insights. First, we doc-
ument that over the observation period the term structure is typically upward
sloping. For Class A and B contracts, the slope peaked in 2008 during the Great
Financial Crisis (GFC) and bottomed in 2010. For Class A contracts it did not
reach the same peak over the sample period, but Class B properties surpassed
their 2008 peak in 2015. Second, the curvature of the term structure is typi-
cally negative, but flattened out in 2009-2010. Both positive slope and negative
curvature of the term structure are consistent across quality classes, but less pro-
nounced for Class B properties. For Class A properties, the general shape of the
term structure can be explained by anticipated acceleration of rental growth rates,
which eventually are expected to level off and even deteriorate because of depre-
ciation and obsolescence.1 For class B properties, the interpretation is similar,
though relatively muted (i.e., attenuated growth and depreciation expectations).

Another insight from our analysis is that average lease dynamics in NYC across
the key rates are well described by a single type of fundamental shock. This con-
trasts with existing term-structure literature that tends to find different indepen-
dent shocks corresponding to short-term, persistent, and growth-rate influences
(Chiang, Hughen and Sagi, 2015). Moreover, in contrast with common single-
factor commodity models (e.g., CIR or Ornstein-Uhlenbeck processes) where the
greatest variation is found in the spot rate, our estimates suggest that long-dated
space forwards are more volatile than short-dated space forwards. This is consis-
tent with a market in which landlords and tenants are not able to easily adjust
their immediate supply or needs for space, so that changes in the rental market
are first felt in longer-dated transactions. Indeed, the 10-year forward lease rate
leads the others in response to a hypothetical shock in our estimated dynamic
model. The spot rate, by contrast is quite sluggish to react (but eventually does).
Importantly, across all forward lease rates, the price impact of a shock takes time
to be fully incorporated, potentially reflecting informational inefficiencies in the
market for leasing space (Hendershott, Lizieri and MacGregor, 2010; Hendershott,

1A forward contract locks-in future lease rates in a property that is now categorized as Class A.
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Lizieri and Matysiak, 1999).
Valuation in CRE typically relies on proforma analyses that ignore variability,

subject to assumptions, and to sensitivity tests based on rules of thumb. We illus-
trate the utility of our approach by applying the estimated model of NYC’s lease
term structure to a revenue strategy employed by hypothetical co-working com-
pany.2 In particular, we evaluate the risk-reward attributes of a leasing strategy
that is “long” a long-dated lease on space and “short” a sequence of short-term
leases. Based on our results, long-dated space forward prices are typically higher
than spot rents. For our sample, this strategy is generally unprofitable, even
assuming full occupancy of the short-term rental. To make the strategy con-
sistently profitable on a risk-return basis for Class A properties in NYC, one
or a combination of the following must be true: The long-term lease base rent
must be below market (e.g., bottom quartile or tercile), the short-term leased
space must be more intensively used (e.g., 20% increased user density), or income
must be derived from other sources (e.g., tenant services). In Class B properties,
the flatter term structure of lease forwards leaves more scope for potential prof-
itability. This advantage, however, has largely disappeared in the last few years
of our sample. Overall, our analysis makes clear that the co-working “long”-
“short” space strategy, while potentially lucrative under the right conditions, is
by itself not sufficiently financially viable across all market dynamics to justify a
co-working business; I.e., additional revenue and risk mitigation is required from
other sources. From an underwriting perspective, our work suggests that it may
be sensible for co-working spaces to be treated more like hotels than office, but
this is currently not the prevailing practice (Chegut and Langen, 2019).

I. Literature

A. Theoretical contributions

Earlier lease valuation models can be found in Miller and Upton (1976), Mc-
Connell and Schallheim (1983), and Schallheim and McConnell (1985). Miller and
Upton (1976) provides a model where the firm decides optimally between leasing
or buying and asset, whereas McConnell and Schallheim (1983) and Schallheim
and McConnell (1985) analyze the valuation of leases with different embedded
options. It is worth nothing that these articles study leases in the broad sense,
i.e. not restricted to the real estate setting.

Recent literature on lease valuation is based upon the model presented in
Grenadier (1995), in which lease rates result from simultaneous equilibria in the
leasing market and the underlying asset market, where competing developers be-
have optimally. In the model, leases are contingent claims on building values
and are determined in the real estate market by conditions such as the num-

2Coworking companies are known to employ multiple revenue strategies to support their business
model. The “long”-“short” space strategy is just one of them.
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ber of competing developers, expectations about future demand for space, and
current construction activity. This model is extended to the case of non-perfect
competition in the developer market in Grenadier (2005).

Other theoretical studies include Clapham and Gunnelin (2003), who derive a
model for the effect of risk aversion and interest rate dynamics;Ambrose, Hender-
shott and K losek (2002), who derive a model for pricing upward-only adjusting
leases; and Ambrose and Yildirim (2008), who study the potential impact of the
lessee’s credit risk on the term structure of lease rates.

B. Empirical contributions

The empirical literature on the term structure of lease rates consists mainly of
studies in which the lease term is a regressor on a model where the current lease
rate is the dependent variable. Examples of such studies include Brennan, Can-
naday and Colwell (1984) for the case of office rents in Chicago; Benjamin, Boyle
and Sirmans (1990) in which a negative and significant slope is found for US
shopping center rents; Wheaton and Torto (1994), who find a positive significant
relationship between rents and lease term for more than 50 U.S. cities; and Webb
and Fisher (1996), who find a negative but not significant relationship between
the lease term and the rental rates for office buildings in the Chicago CBD.

Only a few empirical articles have been concerned explicitly with the term
structure of lease rates. Notably, Gunnelin and Söderberg (2003) study office
leases in Stockholm, Sweden during the period 1977-1991. In this paper, the
term of the lease (in months) is used as an explanatory variable in a regression
model for the rental rates, and the slope is given by its estimated coefficient.
Term structure dynamics are captured by interactions with year dummy variables,
whereas the squared lease term provides an estimate for the curvature of the yield
curve for leases. Renegotiation and other options are considered via dummy
variables as well. They find a statistically significant and positively sloped term
structure in 6 years (out of 15), and a negative and significant slope in one of the
cases. In a similar study, Englund et al. (2004) estimate a regression mondel in
which the term structure in 3 Swedish cities (2,400 properties) during 1998-2002
is determined by interactions among year and lease maturity dummies. Most of
their obtained coefficients are not significant, but a test for zero joint effect rejects
the null hypothesis, which leads them to claim the existence of a positively sloped
term structure.

There exist a number of studies that apply some version of the methodology in
Gunnelin and Söderberg (2003) to investigate the term structure in other markets.
Bond, Loizou and McAllister (2008) use CBRE data corresponding to 935 office
leases in London during the years 1994-2004, and conclude, somewhat imprecisely,
that the term structure is positively sloped for every year in their sample. Fang
and Ruichang (2009) use this framework and find a negative and significant slope
in the Shanghai market during the period 2005-2008. More recently, Hüttel et al.
(2016) apply the same framework to agricultural land rental contracts in Germany
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between 1990 and 2010, although they only observe leases that had not expired
before 2006. They find an upward sloping term structure, with a negative and
significant quadratic term coefficient for some years.

Stanton and Wallace (2009) develop a contingent-claims model for the valuation
of leases with embedded options. The model uses no arbitrage conditions to price
any asset whose payoffs depend on the value of the service flow, i.e. the use of
space, which in equilibrium is equivalent to the lease rate. The spot lease rate is
assumed to follow a geometric Brownian motion (GBM), which restricts the shape
of the term structure to be constant over time. The model is calibrated with data
from 711 lease contracts originated between 1987 and 1996 that correspond to
47 properties, 11 US states, and a single commercial mortgage underwriter. The
data includes information about rent levels, expense pass-through agreements,
embedded options, and local market characteristics. After estimation, the authors
conclude that the model fits the data poorly.

Agarwal et al. (2011) present a model in which the term structure of leases
is determined endogenously by the tenant’s capital structure and space market
conditions. The value of the service flow follows, as in Stanton and Wallace
(2009), a GBM. However, they contrast the cases of a risk-free lessee (in which
the rent can be obtained from equating present value of lease payments to service
flow), and of a risky lessee, which has a certain probability of default determined
endogenously by the firm’s capital structure. Comparative statics of the model
show how the equilibrium rent is affected by changes in different parameters. In
this setup, the shape of the term structure is given by the effect of the lease
maturity, which is proved to be positive. Empirical results obtained using data of
2,482 leases in 10 states of the US between January 2001 and March 2002 seem to
confirm their results in terms of coefficient signs, but no goodness of fit measure
is provided. Based upon the testable hypotheses this model provides, the study
offers a better explanation for cross-sectional heterogeneity of lease rates than for
the level or shape of the term structure.

More recently, Yoshida, Seko and Sumita (2016) develop a discrete time model
for the term structure of leases with a cancellation option. They prove that the
lessee’s cancellation option induces a positive slope on the term structure in a
market with no frictions. However, leasing costs faced by the lessor may generate
a U-shaped term structure. To empirically test these claims, they use data from
700 Japanese residential leases signed between 2000 and 2002. The test procedure
consists of two steps: First, lease rates are regressed on housing characteristics,
year and region fixed effects; afterwards, the error terms are regressed on lease
term dummy variables, which yields estimates of average lease rates for different
maturities. Model fit is low and the differences among the estimated coefficients
for the term structure are not significant. However, the results seem to be con-
sistent with the model: in low-vacancy areas, in which leasing costs are lower for
the lessor, the point estimates show a positively sloped term structure, whereas
in high-vacancy areas a U-shape is observed.
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Our main contribution is in estimating a dynamic model that is flexible enough
to capture different components of the term structure, but is also able to capture
the joint dynamics of these components. By moving beyond the assumption of
simple Brownian motion we are able to model richer dynamics. Instead of relying
on a panel regression framework, as in Gunnelin and Söderberg (2003), we employ
a Kalman filter approach — much as is done in the term structure literature for
interest rates and commodities. The combination of a flexible dynamic model
together with an estimation technique more attuned to capturing signals in the
data generating process enables us to capture term structure attributes with more
confidence.

II. Data

We use proprietary data from CompStak on individual lease contracts correspond-
ing to commercial office properties in New York City.3 Data for each reported
lease contract comes directly from real estate brokers or other entities involved
with the transaction. In exchange for the lease contract information, a reporting
entity receives other brokers’ lease information or “comps”. CompStak staff val-
idate each newly entered lease transaction for consistency and plausibility. This
data collection process may alleviate, at least partially, concerns related to sample
selection bias, data misreporting and measurement error.4

Lease transaction data includes details on the characteristics of the lease con-
tract, the property, and tenants. Reported lease contract terms include the trans-
action date, the commencement date, the term of the lease, the type (e.g., net
or gross), the brokers that were involved in the transaction, whether the lease
has renewal options, the size of the space, the rent schedule, and any concessions
to the tenant. The rent schedule field reports the monthly rent per square foot
over the life of the contract (including rent escalations), while the concessions
field reports the number of months of free rent and/or tenant improvements (TI)
offered to the tenant. The observable characteristics of the property include the
space type (e.g., office, retail, etc.), the address, a quality designation (“Class”),
the size and age of the building, as well as the number of stories. The data set
also includes the name of the landlord and the tenant, as well as the industry of
the latter. In our analysis, we use a subset of these features for commercial office
spaces in Manhattan.

Table 1 reports the number, by year, of leases that have a full rent schedule.
We denote such leases as having full-information (FI). After removing from the
leases in the last three columns of the table those that correspond to quarters in
which less than 30 contracts were originated, we end up with 3,458 transactions
executed between the second quarter of 2005 and the second quarter of 2016.5

3CompStak is a commercial real estate data company that provides information on comparable lease
transactions, or comps, for over 50 United States cities.

4CompStak outlines their verification approach on their website.
5Quarters with fewer than 30 executed leases are 1998Q1-2005Q1, 2012Q3-Q4 and 2015Q1-Q4.

https://compstak.com/
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After further excluding leases with outlier effective rents (outside the 2.5 and 97.5
percentiles) in each of the quality Classes, the resulting sample has 2,465 Class A
leases and 749 Class B leases. On average, there are 88 contracts for each quarter
in our final sample.

Table 1—: Office leases by year of contract execution. The first three
columns show the number of full-information office leases executed during each
year in our data set, classified by quality class. The last three columns restrict
the sample to full-service or gross leases. The number of leases after excluding
quarters with less than 30 executed contracts is 3,458.

All office Full-service/gross office
Class A Class B Class C Class A Class B Class C

1998 2 1 0 0 0 0
2000 1 1 0 0 0 0
2001 5 2 0 4 2 0
2002 21 14 1 7 3 0
2003 37 9 2 13 2 1
2004 390 193 17 16 8 0
2005 364 128 8 132 20 1
2006 581 201 24 289 64 13
2007 585 237 29 316 78 3
2008 444 232 31 282 100 8
2009 477 222 21 262 78 6
2010 556 228 19 388 121 13
2011 615 215 24 342 95 9
2012 759 457 48 81 40 6
2013 450 168 21 255 79 5
2014 445 228 19 220 96 4
2015 60 32 5 37 17 2
2016 145 83 12 74 39 8
2017 86 33 7 25 8 1
2018 80 19 4 41 0 0
2019 6 1 1 2 0 0

6109 2704 293 2786 850 80

We also have information on the type of lease. Gross and full-service leases are
essentially equivalent and are all-inclusive (i.e., the tenants are only responsible
for the associated quoted rents). Modified gross and net (including “NN” and

Among the 3,458 full-information transactions, 90 Class A and 27 Class B leases are missing the TI
field, and 26 Class A and 9 Class B leases are missing the free rent field. In these cases, we assume that
that TI and/or number of free rent months are zero.
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“NNN”) leases place some or all of the burden of operating and maintenance
expenses on the tenant. Because we do not have access to information on property
expenses, we restrict our analysis to gross and full-service leases, which constitute
the largest category of transactions in our data set.

Table 2 reports on key lease characteristics for full-information Class A and
Class B leases in our final sample. Lease term is measured in years and is on
average a little over 8 years for Class A and B contracts with similar year variation.
Lease terms range from two to twenty years and this does not vary much by quality
of space (i.e., “Class”). Time to commencement measures the number of months
between the execution date and the commencement date, where it takes Class A
leases 2.49 months to commence, it takes just 1.97 months for Class B. Time to
expiration is the number of years between the execution date and the expiration
of the lease. Similar to lease term, it takes just 9 years, on average, for both
classes contracts to expire with similar variation.

Table 2—: Summary statistics. The table shows summary statistics for the final sample

used in our estimations.

Mean S.D. 1% 25% 50% 75% 99%

Class A

Lease term (years) 8.95 3.80 2.00 5.25 10.00 10.50 20.00

Time to commencement (months) 2.49 5.29 0.00 0.00 1.00 3.00 28.00

Time to expiration (years) 9.16 3.87 2.00 5.42 10.00 10.75 20.28
Starting rent (USD) 5.54 1.96 2.58 4.08 5.17 6.62 11.20

Average rent (USD) 5.21 1.95 2.41 3.76 4.77 6.20 10.94
Average rent increase (USD per yr) 0.04 0.05 0.00 0.00 0.04 0.05 0.14

Number of rent bumps 0.93 0.78 0.00 0.00 1.00 1.00 3.00

Average bump duration (months) 54.40 16.95 13.64 46.00 57.00 60.00 120.00
Tenant improvements (USD) 31.15 29.27 0.00 0.00 27.00 55.00 100.00

Free rent (months) 5.04 4.05 0.00 2.00 4.00 7.00 15.00

Class B

Lease term (years) 8.86 4.02 1.08 5.00 10.00 10.50 20.60

Time to commencement (months) 1.97 3.71 0.00 0.00 1.00 3.00 12.00

Time to expiration (years) 9.02 4.05 1.42 5.33 10.00 10.58 20.72
Starting rent (USD) 3.53 0.91 2.00 2.83 3.33 4.08 6.04

Average rent (USD) 3.31 0.87 1.91 2.62 3.18 3.88 5.59

Average rent increase (USD per yr) 0.02 0.03 0.00 0.00 0.02 0.04 0.10
Number of rent bumps 0.91 0.89 0.00 0.00 1.00 1.00 4.00

Average bump duration (months) 56.99 24.61 11.55 48.00 58.00 60.00 126.24
Tenant improvements (USD) 23.01 23.08 0.00 0.00 17.75 40.00 75.00

Free rent (months) 4.62 3.52 0.00 2.00 4.00 6.00 14.00

Starting and average rent are measured in USD per square foot per month.
Average rent is the mean of all monthly payments implied by the lease, taking
into account months of free rent and tenant improvements (TI). Starting and
average rents are about $2 more per square foot for Class A space, than for Class
B space, but Class A space has higher variation.

Average rent increase represents the average yearly rent hike in USD, i.e., the
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difference between rent due at the end of the lease and starting rent, divided by
lease term. The average rent increase for Class A space is twice that of Class
B space, $ 0.04 to $0.02, respectively. Moreover, the standard deviation is quite
high, but this is more representative of skewness in the data.

The number of rent bumps represents the number of times the rent is updated
during the leases. For both Class A and B contracts this usually occurs once, but
can occur as many as 3 or 4 times. The timing of a bump is on average every
four to five years, where the average bump duration denotes the average number
of months between rent updates. The average rent increases by just under 1%
per year over its term.

Tenant concessions like TI are measured in USD per square foot. The TI for
Class A space is about $8.00 more per square foot. Free rent is expressed in
months and the average free rent for a Class A and Class B space is not too
dissimilar, 5.04 and 4.62 months, respectively. Importantly, TI are substantial
when given, amounting to nearly a full year’s rent, while a free rent period is
common at a median concession of four months.

Finally, we also have data on the geolocation of the lease contracts. Figure 1
depicts the distribution of Class A and B leases that we use in our estimation.
Leases primarily come from Midtown and Lower Manhattan. Class A leases
cluster at the southern tip of lower Manahattan (near Wall St.) and the Midtown
blocks bounded between 39th St., Central Park, 2nd Avenue and 8th Avenue.
Class B leases are somewhat more evenly dispersed.

A. Relating Lease Contract Specs to a Bundle of Lease Forward Rates

Our analysis relies on the assumption that the present value of the stream of
contract cash flow equals the present value of contract occupancy. Our data set
allows us to calculate the monthly cash flow implied by the contract, including
concessions, along with the corresponding months of occupancy. Each lease can
be viewed as a bundle of forward contracts on space occupancy, with its present
value given by the discounted sum of forward prices. Given enough heterogeneity
in lease terms one can effectively “unwind” the lease bundles to arrive at the
constituent forward contracts. To make the idea concrete, we provide a simple
example.

Example. — Consider three recently signed gross leases. The first has a three-
period term and commits the tenant to a constant contract rent of 5.0 paid in each
of the next three periods. The second lease has a two-period term corresponding
to a rent of 4.5 paid in each of the next two periods. The third lease, also with a
two-period term, starts in period two and pays a rent of 4.0 and 7.0 in periods two
and three, respectively. For the sake of this example, interest rates are constant
at 0% per period. Further assuming away counterparty risk, heterogeneity in the
quality or value of space, or the presence of valuable renewal options, leads to
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Figure 1. : Office Lease Spatial Distribution. The figure depicts the geospa-
tial point distribution of the Class A and Class B Compstak office leases that we
use in our estimation across the sample period (2005 to 2016).
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three equations each of which sets the present value of the cash flow from a lease
to the present value of its forward commitment. Specifically, denoting a current
forward commitment to providing space in period i as Fi yields,

5 + 5 + 5 = F1 + F2 + F3,

4.5 + 4.5 + 0 = F1 + F2,

0 + 4 + 7 = F2 + F3.

The (unique ) solution to the set of equations above is F1 = 4, F2 = 5 and F3 = 6.
�

To account for non-zero interest rates, one need only discount each cash flow and
forward term by its term rate (i.e., multiply each by the price of a corresponding
$1 zero-coupon bond). Moreover, in practice, heterogeneity in the quality of
space means that the set of linear equations linking the present value of rents
and forward space commitments is only approximate, prompting the addition
of a noise term. Two complicating factors that we do not address head-on in
this paper are the potential presence of valuable (to the tenant) renewal and
lease default options. The presence of these options should be reflected by higher
imputed forward rates, and the impact may systematically differ across horizons.
This means that our imputed forward rates should be interpreted to be gross of
average renewal option and systematic credit spreads.6

Another challenge to implementing the general idea outlined above is the fact
that, as suggested by Table 2, there are very few short-term leases. That is
because, leases tend to cluster around certain industry-standard terms (e.g., 5-,
7-, 10-, and 15-year leases). Thus there isn’t enough heterogeneity in lease terms
to identify all points along the term structure. To deal with this, following the
literature on the term structure of interest rates, we assume that all forward lease
rates at a given time can be derived from a small set of key forward rates via
linear interpolation. Specifically, we consider three key forward rates: the spot
price of occupancy, corresponding to contracting for the next month of space; the
five-year forward rates, corresponding to locking in today one month’s occupancy
starting in five years; and the ten-year forward rate, similarly defined.7 Under
the linear interpolation assumption, the forward price of one month’s occupancy
starting in 2.5 years from now is a 50:50 weighting of the spot and the 5-year
rates.

6In principle, if one were able to control for the credit worthiness of each tenant one would be able
to back out a term-dependent credit spread. At this point we do not have such data. Likewise, among
the full-information leases we employ in our estimation, only 14 Class A and 5 Class B leases include
information about a renewal option (the rest are empty), and in each case the information is too vague
to quantitatively interpret.

7We restrict attention to three key rates, despite the small amount of clustering around 7- and 15-
year leases because the increase in parameters that we estimate in our structural state-space model is
quadratic in the number of key rates.
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B. Details of the Fundamental Observation Equation

For any lease with full information in our dataset and executed at some calendar
month t, we can compute the monthly cash flow sequence commitment from the
occupancy commencement to the final month. This includes months of free rent
and also accounts for any scheduled contract rent escalations. Correspondingly,
TI commitments are subtracted from rent paid in the first month of occupancy.
Denote the monthly cash flow sequence for a lease i executed at month t as
(ci,t,0, ci,t,1, . . . , ci,t,Ti), where the last contract month starts at t+Ti. It is possible
for some of the ci,t,τ ’s to be zero or positive (e.g., if t+τ is prior to commencement
or coincides with a month of free rent, or a month in which TI is paid).

For each execution month in our sample, we obtain continuously compounded
risk-free Zero Coupon Bond (ZCB) rates from OptionMetrics and compute present
value (discount) factors.8 Denoted as dt,τ the discount factor at month t for a
risk-free obligation due at month t+ τ . This is also the price of a $1 zero-coupon
bond maturing at t+ τ .

Next, we denote as Ft,τ the contract (forward) price, determined at month t, of
locking in a commitment to one month of occupancy at month t+τ . As mentioned
earlier, we assume that Ft,τ is determined by linear interpolation/extrapolation
from Ft,0, Ft,60, and Ft,120. For instance, the forward price of Ft,1 = 59

60Ft,0 +
1
60Ft,60. We then denote as vτ the vector of linear interpolation coefficients applied
to the vector of key rates to generate Ft,τ . In the example just given, v1 =
(59

60 ,
1
60 , 0).

For a given lease i at month t we define PVi,t to be the sum of lease cash flows,
(ci,t,0, ci,t,1, . . . , ci,t,T ), discounted to the present using the ZCB rates:

PVt,i =

Ti∑
τ=0

dt,τ ci,t,τ ,(1)

Let t+ τc be the occupancy commencement date. The corresponding expression
for discounted forward claims on the same space is

Ti∑
τ=τi,c

dt,τFt,τ =

Ti∑
τ=τc

dt,τvτ · (Ft,0, Ft,60, Ft,120)′(2)

= wt,0,iFt,0 + wt,60,iFt,60 + wt,120,iFt,120,(3)

where wt,0,i =
∑Ti

τ=τc
dt,τ (vτ )1, and (vτ,)1 is the first component of vτ , while wt,60,i

and wt,120,i are similarly defined using the second and third components of the
key-rate coefficient vector vτ . Note that the expression in Eq. (2) is linear in the

8Rates from OptionMetrics are only available for up to ten years of maturity. For longer horizon
payments we use the 10 year rate.
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lease key rates.
Our main hypothesis is that there is an underlying prevailing term structure of

lease rates in NYC and that it determines the average lease price. In other words,
we are asserting that

PVt,i =
∑

a∈{0,60,120}

wt,a,iFt,a + mean-zero independent error.

For each lease, the quantity on the left side is observable in our data, as are the
wt,a,i coefficients. This is the empirical analogue of the simple example provided
earlier. A problem with estimating this equation is that longer leases will have
larger PVt,i’s and correspondingly larger wt,a,i coefficients (i.e., a short-maturity
lease is a smaller bundle of forward obligations than a long-maturity lease). In
fact, the PVt,i’s will roughly scale with the lease term, suggesting that deviation
from average pricing will be more pronounced for longer leases than shorter leases.
To control for the expected heteroskedasticity in the error term, we normalize both
left and right side of the equation above by the sum of coefficients. To that end,
we define the normalized discounted lease cash flow as,

nPVt,i =
PVt,i∑

a∈{0,60,120}
wt,a,i

,(4)

and restate our observation equation as

nPVt,i =

∑
a∈{0,60,120}

wt,a,iFt,a∑
a∈{0,60,120}

wt,a,i
+ ut,i,(5)

where the ut,i’s are assumed to be independent across leases (i.e., there is no
systematic deviation from average pricing for any subset of leases).9 Equation
(5) relates lease cash flow to a weighted average of lease key rates and is central
to our estimation methodology. It also has a simple economic interpretation. If
the term structure of lease rates were flat, then Ft,a would not vary with a and
Equation (5) would reduce to nPVt,i = Ft + ut. In other words, the forward rate
would simply be the average over calculated nPVt,i’s in a given execution period.
One can therefore interpret nPVt,i as an effective rent.10

Figure 2 plots average effective rent for Class A and B leases in our final sample.
Class A effective rents have remained largely constant, if one ignores the run-up to
the GFC. By contrast, Class B effective rents appear to have markedly increased

9One could model ut in more detail by making it dependent on available hedonic variables.
10It is this calculated effective rent that we use when trimming the Class A and Class B datasets at

the 2.5 and 97.5 percentiles.
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Figure 2. : Effective rent. Plotted is the average quarterly effective rental rate
calculated in Equation (5). The rate is monthly (per square foot) and separately
calculated for Class A and Class B properties in our dataset.

over the sample period.

III. Empirical estimation

Equation (5) is a linear relation linking the key rates to observable quantities.
Viewed as a cross-sectional expression for month t, the key rates (i.e. the Ft,a’s)
are coefficients in a linear regression. Correspondingly, we can estimate the key
rates each period by OLS. Although this simple analysis is sufficient to reject
a flat and constant term structure, the corresponding standard errors are too
large to capture the time series behavior and autocorrelation structure of the key
rates. To accomplish that, we turn to a more sophisticated Bayesian (Kalman
filter) estimation approach.

A. Näıve Estimation of Key Forward Rates

We bucket leases by quarter to estimate key rates via OLS from Equation (5).
This is because a monthly estimate lacks sufficient statistical power to adequately
resolve the regression coefficients (i.e., the key rates). Thus our estimates of the
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key rates would correspond to “instantaneous” forward rates averaged over the
quarter. Regressions are performed independently for each of the 39 quarters in
our sample.

Table 3 reports the resulting distribution of OLS coefficients corresponding to
the estimated key rates for Class A properties.11 The main emerging pattern from
this exercise is an upward sloping but concave (inverted U-shape) term structure
of lease rates. The distribution of Spot rates (Ft,0) is typically dominated by that
of the 5- and 10-year rates, but the 5-year rate typically dominates both. Treated
as independent observations, one can reject the hypothesis that the pooled co-
efficients are equal. In other words, the term structure does not appear to be
flat.

Table 3—: OLS estimates for Class A properties. The table shows summary
statistics for the OLS point estimates of the spot (Ft,0), 5-year forward (Ft,60),
and 10-year forward (Ft,120) rates across all 39 quarters in our final sample. The
model for each quarterly regression is given by Equation (5)). The number of
class A leases in each quarterly estimation sample ranges from 21 to 114.

Mean S.D. 10% 25% 50% 75% 90%
Spot 4.12 1.84 2.21 3.47 4.19 5.32 6.24
5yr 6.04 2.16 3.87 4.87 5.79 7.05 8.87
10yr 4.75 2.11 2.04 3.64 4.79 5.94 6.84

To provide a sense of the time-variation in the coefficients, Figure 3 plots OLS
estimates and 95% confidence intervals of the key rates at different points in the
real estate cycle. Outside of the period of great market stress in commercial real
estate (2008-2011), one observes a small but positive slope to the term structure,
with a pronounced inverted-U shape. During the time of stress, the slope flattened
(or even became slightly negative) and the curvature largely disappears.

It should be clear from the plotted confidence intervals in Figure 3 that one
can reject a flat term structure hypothesis even during specific quarters. Still,
this exercise fails to adequately capture time-series dynamics.12 The time-series
autocorrelation for the each of the key rates (estimated via OLS) is close to zero.
Such a conclusion, of course, is economically suspect and is likely driven by the
large standard errors in each of the cross-sectional estimates. What is missing
from the näıve approach taken above is a link between distinct cross-sectional
estimates. For instance, if the estimated spot rate is high in the two extreme
quarters among three contiguous quarters, then the likelihood should be more

11We only report results for Class A properties because there are too few (one third as many) Class B
properties to obtain reliable estimates of key rates in most quarters. Later, when employing state-space
techniques, we overcome this hurdle.

12This issue would also afflict a panel regression approach to estimating the key rates (e.g., Gunnelin
and Söderberg, 2003).
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Figure 3. : OLS estimates for Class A properties The figure shows OLS
estimation results for the spot (Ft,0), 5-year forward (Ft,60), and 10-year forward
(Ft,120) in four of the quarters in our sample. Point estimates are depicted by
green dots. The black arrows represent ± 1-standard-error bands for each of the
point estimates.

than 50% that the spot rate for the middle quarter is also high. To include this
logic in an econometric framework we resort to state-space Bayesian estimation
techniques, described next.

B. Structural State-Space Model

We model the (unobserved) key rate dynamics as a VAR(1). This is done
both for ease of estimation and also because, in our limited sample period, one
cannot reject the hypothesis that effective rents are mean-reverting.13 Denoting

13Mean reversion is unlikely to hold in a sample period spanning several decades where inflation alone
will lead to secular growth in rents. we expect that over a longer time period, the dynamics we identify
will be complemented by a slow-moving growth factor.
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the vector of three key rates as Ft = (Ft,0, Ft,60, Ft,120)′, the assumed evolution is

Ft+1 = F̄ + ρFt + εt+1,(6)

where εt+1 ∼ N(0, Q) is uncorrelated with Ft and Q is some positive semi-definite
matrix, F̄ is a constant vector, and ρ is the 3x3 AR(1) matrix with eigenvalues
in [0, 1).14

As with the OLS estimation, we bucket leases by quarter to estimate average
quarterly key rates and restrict attention (at first) to Class A properties. If, in
addition to F̄ , ρ and Q, the variances of the ut’s in the observation equations are
known, then these can be used in conjunction with the Kalman Filter to back out
the key rates. To do that, we assume that one quarter prior to the first quarter
in our dataset, the key rates are drawn from the prior distribution given by the
unconditional first and second moments of the process for Ft.

15

The above procedure allows us to impute the time series of key rates assuming
that the various model parameters are known. To estimate these, we search for the
parameter set that maximizes the Gaussian likelihood of observed data. Details
are available in most graduate texts on econometric time-series techniques. This
approach permits us to simultaneously estimate both the model parameters and a
“best guess” at the time series of realized key rates (referred to as the “smoothed”
time-series).

In estimating the model, we found that allowing the variance of observation
errors (i.e., the ut,i’s) depend on the calendar year substantially reduced erratic
movements in the imputed key rates.

Because the model features many parameters, our search for the maximum like-
lihood parameter set is done by first generating a pseudo-uniform (Sobol) grid of
3,000 parameter sets and then used each of these points to initialize a separate
search for a local optimum. We then selected the best of all converged searches.
Surprisingly, there was a clear cluster around the global optimum, suggesting that
we’re unlikely to have missed a better fitting parameter set. The corresponding
parameters are reported in Tables 4 - 5. Next, we separately estimate the model
for Class B leases with the important difference that we assume the AR(1) matri-
ces (the ρ’s) for Class A and B leases coincide, and that the variance matrices (the
Q’s) for the two Classes are proportional. The restrictions substantially reduce
the number of Class B parameters we need to estimate. What is surprising is
that the observation errors for Class B leases (Table 5) are several times smaller
than those for Class A. This reduces concern that the parameter restrictions may
lead to model misspecification for the Class B leases.

14The constraint on the eigenvalues ensures that the process is mean-reverting and non-oscillating.
15The unconditional mean of Ft is given by (I − ρ)−1F̄ . Its associated unconditional variance, V ,

is given by the solution to the linear matrix-valued equation, V = Q + ρV ρ′. Once again, we caution
that the unconditional mean and variance we estimate reflect only the sample period we observe. Over
a significantly longer, or inflationary, time period we would expect that the time series of forward rates
would not be mean-stationary.
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Table 4—: State equation parameters. The table shows maximum likelihood
estimates for the parameters in Equation (6), obtained via a Kalman Filter. The
eigenvalues of ρ and Q were restricted to [0, 1] employing a Schur decomposition
of these matrices. The main estimation was performed using our sample of 2,465
class A leases. For the class B estimation, we fixed ρ and Q (except for one
eigenvalue) at the Class-A point estimates, and then estimated the rest of the
parameters.

Class A Class B
F̄1 2.8075 1.8556
F̄2 2.8605 1.9021
F̄3 3.2041 2.1599
ρ11 -0.4504
ρ12 -0.3205
ρ13 1.1557
ρ21 -1.1093
ρ22 0.7395
ρ23 0.7510
ρ31 -1.4622
ρ32 -0.2787
ρ33 2.0336
Q11 0.0000 0.0000
Q22 0.0205 0.0148
Q33 0.0311 0.0224
Q12 0.0006 0.0004
Q13 0.0007 0.0005
Q23 0.0253 0.0182

To more readily compare with the OLS estimation (Table 3), we report the
unconditional mean and variance of the key rate vector, Ft, in Table 6. The
statistics in the table convey a measure of average key rate statistics over our
sample period. For Class A leases, here too one observes the increasing yet concave
“average” term structure, reinforcing the conclusions from the less sophisticated
analysis and lending the finding of an inverted-U shape an element of robustness.
Class B properties, on the other hand, appear to be nearly flat. While this
might be true for the sample, on average, the Class B term structure has been
consistently sloping up in recent years.

It is interesting to note that the key rate variances in Table 6 (the diagonal
terms of the Variance matrices) increase with the horizon of the forward con-
tract. This is unusual for commodities exhibiting mean-reverting price. In the
standard term structure literature, whether dealing with commodities, currencies,
or interest rates, long-horizon forward rates tend to vary less than the spot. This



19

Table 5—: Observation equation error variances. The table displays the
maximum likelihood estimates for the elements of the variance-covariance matrix
of ut,i in Equation (5), obtained via a Kalman Filter. We assume such matrix
to be diagonal and restrict the variance of the observation errors to be the same
for all leases signed during a given year. The columns labeled ”Count” show the
number of leases executed each year in each quality class.

Class A Class B
Variance Count Variance Count

2005 2.6836 112 0.3293 19
2006 4.0948 278 0.3395 59
2007 4.2758 299 0.4091 78
2008 4.4386 260 0.4669 97
2009 2.4042 254 0.4440 77
2010 1.8325 374 0.3044 110
2011 3.0644 322 0.4046 90
2012 2.3467 60 0.5084 23
2013 3.1751 247 0.8192 79
2014 2.4734 207 0.8957 90
2016 1.9635 52 0.5365 27

is termed the “Samuelson Effect”. It appears that lease forward rates exhibit the
opposite behavior. This might arise because there is greater scope for adjust-
ing the supply and demand for long-horizon space commitments. For instance,
consumers of space may be relatively inflexible concerning their current space
needs, while suppliers of space cannot quickly increase their “inventory” of space
and may be disinclined to keep short-term space unleased for fear of foregoing
rents. In other words, supply and demand for short-term occupancy is relatively
fixed. Because more adjustment is possible for future perceived needs and avail-
ability, the market for locking-in long-dated space may exhibit greater variability
in response to changing economic conditions.

It is also useful to examine the eigenvalue structure of the autocorrelation ma-
trix, ρ, reported in Table 7. What is striking is that the eigenvalues are roughly
equal, meaning that shocks to forward rates decay at a roughly constant rate
across all horizons. This is consistent with another finding: A decomposition of
the variance matrix, Q, (in Table 4) reveals that it has only a single non-zero
eigenvalue. What this means is that the estimated dynamical system for the key
rates is driven by a single source of uncertainty. As discussed above, one interpre-
tation is that changes to the economic conditions are first reflected in changes to
the supply/demand equilibrium of long-run lease components, and subsequently
transmitted to shorter maturity forward components.16

16Stated in lay-terms, it may be easier to negotiate over the terminal date of a lease than the start
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Table 6—: Unconditional mean and variances. The table shows the un-
conditional mean and variance of the key rate vector, Ft, as implied by the point
estimates of the parameters of the state equation (Eq. (6)), displayed in Table
4. The unconditional mean of Ft is given by (I − ρ)−1F̄ . Its associated uncon-
ditional variance, V ,is given by the solution to the linear matrix-valued equation
V = Q+ ρV ρ.

Class A Class B
Spot 5yr 10yr Spot 5yr 10yr

Mean 4.4733 5.5577 4.7263 3.1873 3.155 3.2696

0.2291 0.1756 0.3218 0.1652 0.1266 0.232
Variance 0.1756 0.3167 0.3385 0.1266 0.2284 0.2441

0.3218 0.3385 0.513 0.232 0.2441 0.3699

Table 7—: Eigenvalues of ρ. The table displays the maximum likelihood
estimates of the eigenvalues of ρ (Eq. (6)), obtained via a Kalman Filter. These
parameters were restricted to [0, 1] using a Schur decomposition of ρ.

Class A
0.7661 0.7809 0.7757

To examine how an economic shock differentially impacts the key rates and
eventually ”decays”, we undertake an impulse-response exercise. In it, we consider
a one standard deviation disturbance to the single fundamental shock underlying
the dynamical system for Class A key rates in NYC. We plot the results in Figure
4. At Quarter 0, the key rates are at their unconditional mean and at Quarter
1 we apply the one standard deviation shock. One can see that the impact
of the shock is initially most pronounced in the 10-year forward and least seen
in the spot. Interestingly, the shock applied in Quarter 1 continues to move
prices in the same direction — in other words, prices at Quarter 1 do not fully
reflect the impact of the shock. In a market where information is efficiently (i.e.,
immediately) incorporated in prices, a 10-year forward commitment to space made
in Quarter 1 would anticipate predictable increases in forward prices the following
quarter: The price impact of the Quarter 1 shock would be fully felt in Quarter 1.
By contrast, the estimated dynamical system suggests substantial inefficiency in
the space market where it takes around six months for prices to fully reflect the
Quarter 1 shock. Also interesting is the fact that, though attenuated, the shock

date of a lease. In turn, the supply of and demand for long-term forward components of leases can more
easily adjust to changing economic conditions.
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Figure 4. : Impulse-response plot. The estimated dynamical system of lease
forward key rates in Equation(6) is driven by a single shock that differentially
impacts the key rates. Initially, the shock most profoundly impacts the 10-year
forward (F10, gray circles) and is subsequently transmitted to the other key rates.
Eventually, it finally decays.

does make a non-trivial impact on the spot market but the impact is delayed
relative to the influence on long-date forwards. This illustrates that shocks are
sluggishly transmitted from long-dated to short-dated forward rates.

From the estimated model parameters, we can use the Kalman filter to produce
optimal estimates for the time-series of key rates. There are two ways to estimate
these time series. One can produce an estimate of key rates each quarter that
depends only on information available up to that quarter. This is termed a
“filtered” estimate. Alternatively, each quarter, one can employ all observed
information (including observations from subsequent quarters) to impute the key
rates. This is termed a “smoothed” estimate. We opt to report the latter because
our goal is to provide our best possible estimate for the unobserved key rates.

Figure 5 plots smoothed estimates of the key rates over our sample period, for
both Class A and B properties. Several features stand out. Firstly, both the level
and the relative rankings of the key rates are time-varying. Second, one can see
evidence that the 10-year lease rate leads the shorter maturity rates, as suggested
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Figure 5. : Term structure of lease rates. The figure depicts the estimated
key forward and spot rates for class A (solid lines) and class B (dotted lines)
properties, as given by the Kalman smoother. Key rates for quarters with less
than 30 executed leases were interpolated.

by the impulse-response exercise of Figure 4.

Figures 6 and 7 plot the slope and curvature, respectively, of the term struc-
tures implied by the key rates. The slope is calculated as 1

10(Ft,120 − Ft,0) while
the curvature is (Ft,120 − 2Ft,60 +Ft,0). The top (bottom) plot in each figure cor-
responds to the Class A (B) term structure. Because the key rates are estimates
rather than directly observed, we additionally plot 95% confidence intervals for
the slope and curvature.17

What is apparent from the plots is that, although the term structure is typically
upward sloping with negative curvature, this is not always so. Consistent with
the näıve OLS estimates in Figure 3, on the heels of the Great Financial Crisis,
the term structure briefly flattened and even became slightly downward-sloping.
Another main takeaway is that both the positive slope and negative curvature
are more pronounced for Class A than Class B properties. Finally, although the
slopes and curvatures across the different class of properties are clearly correlated,

17The Kalman smoother generates a covariance matrix for the estimation errors of the key rates at
each quarter. This, in turn, is used to calculate the confidence intervals.
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Figure 6. : Slope of the term structure of lease rates. The figure shows the
slope of the term structure measured as 1

10(F10 − F0), one tenth of the difference
between the 10-year forward and the spot rates for class A (top) and class B (bot-
tom) properties, as given by the Kalman smoother. The dashed lines represent
95% confidence intervals.

.
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Figure 7. : Curvature of the term structure of lease rates. The figure
shows the curvature of the term structure measured as F0 + F10 − 2F5, the sum
of the spot and the 10-year minus twice the 5-year forward rates for class A (top)
and class B (bottom) properties, as given by the Kalman smoother. The dashed
lines represent 95% confidence intervals.

.
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the slope for Class B properties have recently exhibited a steady increase whereas
the Class A slope stayed relatively constant.

C. Discussion

It is legitimate to ask whether our estimates of the key rate time series, and
therefore the term structure of lease rates, are grounded in substance rather than
driven by spurious variables for which we’ve failed to control. Moreover, it is
equally legitimate to ask what kind of economic forces might lead to the imputed
shapes of the term structure in our data. We begin by addressing the latter
question, and then turn to discussing possible unobserved influences.

Comparison with Other Commodities. — To gain an appreciation for what
may drive lease forward rates, it seems natural to compare them with other types
of forward contracts. The most important economic force restricting the term
structure of forward contracts is the possibility of arbitrage. The price specified
by a τ -years forward contract on a dividend paying asset with current value St
must be given by

Ft,τdt,τ = Stdt,τ − pvt[Div(t, t+ τ) + f(t, t+ τ)],

where dt,τ is the price of a $1 zero coupon bond maturing at t+τ , pvt[Div(t, t+τ)]
is the present value of all benefits (“dividends”) derived from ownership of the
asset between t and t + τ , and pvt[f(t, t + τ)] is the present value of a market
friction component, f(t, t + τ), that must be in the interval [−bc(t, τ), sc(t, τ)].
Here, bc(t, τ) is the cost to short sell (or borrow) the asset between t and t + τ ,
and sc(t, τ) is the cost to store the asset between t and t+ τ . In plain language,
absent market frictions, the forward price is the spot, less the capitalized value
of cash flow forgone before taking delivery of the asset. As most text books de-
scribe it, deviations from this pricing in a frictionless market leads to an arbitrage
opportunity from a cash-and-carry or reverse cash-and-carry strategy. In the for-
mer, when the forward price is too high, one borrows money risk-free, purchases
and stores the asset while simultaneously selling it forward, invests the dividend
cash flow until delivery, and upon delivery uses the forward sale price to pay off
the debt. In a reverse cash-and-carry, if the forward price is too low, the asset
is sold short while simultaneously purchasing the asset forward, the proceeds are
invested in a risk-free bond and used to pay off the dividend commitments to the
asset holder, and the remainder is used to pay the forward price and settle the
asset loan.

The friction working against a (reverse) cash-and-carry strategy is (short-selling)
storage costs. The important point we wish to make is that the frictions associ-
ated with executing a cash-and-carry strategy (or its reverse) in the space market
are prohibitively large, meaning that arguments based on arbitrage are unlikely
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to bound forward prices in a meaningful way. To see this, contrast the forward
market on space with the forward market on, say, copper. Firstly, the underlying
commodity on which the forward contract is written in the space market (via a
lease) is not homogeneous across time. That’s because the 10-year forward com-
ponent of a lease corresponds to space in a property that is ten years older than
the underlying space for a spot component. The quality of Copper, on the other
hand, is essentially time-invariant. Second, and relatedly, the copper promised
in a ten-year forward commitment can come from anywhere so long as its purity
exceeds certain standards; by contrast, it would be generally prohibitively expen-
sive for a tenant to agree to accept the promised space in the ten-year forward
component of a lease from anywhere other than the same source (i.e., building) as
the spot commitment of space.18 Finally, a forward component of a lease delivers
occupancy to be consumed over a set period of time, whereas a forward commit-
ment to copper delivers a good that can be consumed anytime once it is acquired
(subject to storage costs). In other words, the benefits from the delivery of a lease
forward cannot be “stored”, and this restricts cash-and-carry forms of arbitrage.
In this regard, lease forwards in the space market resemble those in the electricity
market where storage costs are prohibitive and thus a claim delivered today must
be consumed today or foregone. Correspondingly, reverse cash-and-carry is not
possible because the cost to borrow spot space is the full spot rental rate whereas
the cost to borrow a non-ephemeral commodity (like copper) corresponds more
closely to cost of deferring its use.19

To summarize, inherent inhomogeneities and the inability to meaningfully store
the goods that a lease delivers obviate typical no-arbitrage constraints on lease
forwards that might otherwise apply to standard commodities.

Our estimates suggest a term structure that is often upward sloping and po-
tentially concave. Below, we list some economic influences that might explain the
imputed shape.

Anticipated price increases. — Inflation and anticipated increases in demand
for space relative to supply will place upward pressure on forward lease rates. If
the market anticipates rental growth rates that decelerate from an initial high
level, then this can lead to an upward sloping and concave term structure.

Quality deterioration and obsolescence. — The Class A leases we “unbun-
dle” are only guaranteed to be deemed Class A when the lease is executed. Prop-

18Correspondingly, individual forward lease commitments cannot be costlessly stripped from a lease
agreement. I.e., few Class A office tenants can move their operations for only a single month while their
leased space is let to another entity for only that month.

19The analogy with electricity would have us compare the property itself to the generation plant. One
may be able to store or borrow the plant, as one would with a building, but one cannot (at this point)
meaningfully store a month’s production of electricity from a large plant, and to borrow one month’s
production one would have to pay its full price because its use could not be deferred.
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erties deteriorate and become obsolete, and it’s considered received wisdom in the
commercial real estate industry that, absent intensive capital investment, most
properties will drift down the quality spectrum as newer or more updated space
becomes locally available. This means that the 10-year forward lease rates we
impute represent space that, on average, is in decline relative to the spot market.

In other words, one would expect deterioration and obsolescence to contribute
towards a downward sloping term structure. In addition, because deterioration
decelerates, one would expect that these effects would contribute positively to the
convexity of the term structure. Relatedly, one would expect these considerations
to be more impactful for Class A properties than for Class B properties.20

Credit losses.. — Typical forward agreements mitigate counterparty risk using
margin accounts. Although leases may incorporate some kind of escrowed funds
(e.g., damage deposits), these are not typically enough to offset losses due to lease
defaults. We are unable to control for tenant credit in the imputation of forward
lease rates, meaning that they likely incorporate some credit spread, much as
in the case of corporate bonds. With high-quality bonds, one also typically ob-
serves default rates that increase with term — this is because a well-underwritten
investment-grade issuance is less likely to default in its first year than in subse-
quent years, and because credit is mean-reverting.

To compensate for possible default, the corresponding forward lease rate would
have to increase. In turn, and absent the type of selection bias described below,
the default dynamics described above should contribute positively to both the
slope and convexity of the term structure.

Lease renewal options.. — Like the option to default on their lease commit-
ment, a renewal option can only be exercised by the tenant. Although renewal
can reduce lease commissions paid by landlords, one may generally expect that
their value is greater to the tenant, meaning that their value should be expressed
through higher rents.

Assortative matching (selection bias).. — Our methodology relies on the as-
sumption that differences in term across tenants and space (for same-class leases)
is statistical noise. If there are systematic differences in the quality of tenants
or space across lease terms, then this will lead to systematic distortions in our
imputed term structure of lease forwards.

Examples of such systematic differences include the possibility that greater de-
fault risk is associated with mid-maturity leases. This could happen, for instance,
if landlords will only sign long-term leases with the highest-credit tenants. In such
a case, long-maturity leases will have lower effective rents as would shorter-term

20Class B properties are often properties that, at some point, were Class A.
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leases for reasons mentioned earlier. If risk concentrates in mid-maturity leases,
then this would contribute to negative convexity in the term structure. Although
we cannot rule this out, we do note that the negative convexity of Class B proper-
ties is greatly attenuated relative to Class A. It is unclear why risk concentration
would be more pronounced in mid-term Class A, relative to Class B, leases.

Likewise, if renewal options are more prevalent in Class A mid-term leases then
this too would enhance the negative convexity of the term structure. Here too, it
is not clear how such an explanation accounts for the difference between Class A
and B properties. Moreover, in examining leases that include some information
on renewals, we could not find any significant relationship between the presence
of lease renewals and lease term.21 However, there is limited evidence that lease
renewal options tend to cluster around renewal terms of five years. If a five-year
renewal option value is “amortized” over the length of the original lease, then
this might cause shorter-term leases to exhibit greater effective rent. Overall, to
investigate these possibilities further, we would need to explore a complementary
dataset that included details on renewal options.

By summarizing the influences identified above, one can attempt to account for
the observed term structure of lease rates over our sample period in the absence
of selection bias. Specifically, anticipated growth and “normal” default profiles
will contribute to an upward sloping term structure. Natural depreciation and
obsolescence will pull the term structure the other way. The term structure we
observe can be rationalized by dynamics in rental growth expectations for Class
A space are themselves concave (i.e., greater growth rates in the short/mid- than
in the long-term), and in the long-run are further slowed by expected quality
depreciation. For Class B properties throughout much of the sample period, by
contrast, growth and depreciation expectations were roughly in balance, leading
to a far flatter term structure. A default-free version of the term structures would
potentially exhibit similar characteristics but with an even lower slope and more
pronounced concavity.

IV. An application

By estimating a model of the term structure of leases, we are in a unique
position to address questions concerning the risk and reward associated with
spatial market strategies. The recent hype surrounding WeWork focused attention
on the viability of short-term leasing of office space. Co-working companies, such
as WeWork, provide high-quality office space and amenities/services on a short-
term basis where the contracts can range from a day to a year. The business
strategy consists of obtaining long-term rights to a space, and then offering it to
short-term users. Profitability and risk can arise from what we refer to as the

21There are about one thousand leases with some information about lease renewals, although all but
a few are missing key information and are not used in our estimation of forward key rates.
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spatial and service components of the business strategy. The spatial component
consists of benefiting from the difference between short-term and long-term lease
rates and/or the intensification of short-term usage of leased space. The latter
consists of increasing the number of users of the space per unit of area. The service
component comes from profit margins created by the provision of amenities (e.g.,
internet usage, food/beverage, document printing, storage, furniture, and even
atmosphere).

The success of a co-working business relies on both the spatial and the service
components. Although we are not in a position to assess the risk and reward from
the service component, our model permits us to analyze the spatial component
of a co-working business. In particular, we take the position that the more the
business model depends on the service component to be profitable, the more
it resembles service-intensive real estate investments (e.g., hotels) rather than
traditional office properties. Indeed, our analysis in this section suggests that,
absent non-trivial intensification or skill in obtaining long-term claims to high-
quality space at below market prices, the spatial component is a drag on profits
and a source of substantial financial risk.

Our analysis is based on estimating, in each quarter of our sample period, the
profits and risk from paying to lease a space for 10 years, and financing this
by turning around and leasing the space to users on a short term (quarterly)
basis. Because our model allows us to both forecast the dynamics of lease rates
and calculate the standard error around that forecast, we can calculate both
the expected profit and the profitability standard deviation from this strategy.
Moreover, we can vary assumptions about average vacancy, intensification, and
skill required to secure a below-average rate for the 10-year lease.

The appendix details how we calculate the expected profit and associated stan-
dard deviation for the strategy. Figure 8 depicts the results. To crystallize ideas,
consider executing the strategy in 2010Q1. We first calculate the filtered key rates
in 2010Q1 from the Kalman filter (using only information dating from 2010Q1
or earlier). These roughly correspond to the smoothed 2010Q1 key rates seen
in Figure 5. The lease forward key rates can then be used to price an average
10-year lease (i.e., derive the average rent that would have been paid on a 10-year
lease in 2010Q1). Next, we use the 2010Q1 filtered key rates to forecast quarterly
lease rates for the next 40 quarters, together with their Gaussian forecast error.
The difference between the forecasted quarterly lease rates and the fixed 10-year
rental payment is then discounted to the present using 2010Q1 zero coupon bond
prices. This is a measure of the (discounted) expected profitability of the strat-
egy, as might have been assessed in 2010Q1. The forecast errors are then used to
derive a 95% confidence interval for this quantity. The procedure is then repeated
for 2010Q2, and so on. Figure 8 indicates that during most of the sample window,
the strategy has not been profitable in Class A properties. This is because the
lease term structure is mostly upward sloping. The only time the strategy would
have been profitable was in the two years following the Great Financial Crisis.



30

Figure 8. : Expected profit from long-short space strategy. The figure
depicts the time series of expected profits for a strategy in which a 10-year lease is
financed by leasing the space on a rolling quarterly basis. Profits from class A (B)
properties are depicted in the top (bottom) panel. The strategy assumes 100%
occupancy (there is a short-term occupant in every quarter over the 10 years).
The profits are in dollars per square foot and discounted to the present using the
contemporaneous zero-coupon yield curve. Dashed lines denote 95% confidence
intervals.
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Figure 9. : Expected profit from long-short space strategy. The figure
depicts the time series of expected profits for a strategy in which a 10-year lease
is financed by leasing the space on a rolling quarterly basis. Profits from class
A (B) properties are depicted in the top (bottom) panel. The strategy assumes
90% average short-term occupancy. The profits are in dollars per square foot and
discounted to the present using the contemporaneous zero-coupon yield curve.
Dashed lines denote 95% confidence intervals.

On the other hand, save for the Great Financial Crisis years, the strategy has
been profitable in Class B space prior to 2013. After 2013, it was not longer so.
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In calculating the profitability of the long-short space strategy outlined above,
we assumed that the space was successfully leased out on a short-term basis in
each of the 40 quarters that the 10-year lease was in place. Under a more reason-
able 90% occupancy assumption, there are no quarters in which the strategy is
profitable in Class A space, and it becomes unprofitable throughout most of the
sample period for Class B space. This is depicted in Figure 9.

To provide a sense of the riskiness involved, we calculate a “Sharpe Ratio” for
the various strategies. This is done by dividing the annualized expected strategy
profits in a given quarter by the corresponding annualized standard deviation of
the profits. For comparison, consider that typical equity market risk corresponds
to annualized Sharpe Ratios of roughly 50%. What the figures show is that
even when the long-short space strategy is profitable, it rarely provides high
compensation for the risk entailed. By and large, our takeaway is that without
additional advantages, the long-short space strategy yields negative profits at
substantial risk.

A. Turning a profit in a long-short space strategy

The preceding analysis of risk and reward to the spatial component of a co-
working business model assumes that space is acquired and re-leased at average
market rates. Table 5, which documents estimated dispersion in observed effective
rents, indicates that observed lease rates can vary widely from average market
rates. This suggests that a talented (or lucky) negotiator may be able to obtain a
below-market rate on the 10-year lease. Likewise, our analysis assumes that the
use intensivity of the space obtained with the 10-year lease is equal to the use
intensivity of the short-term renter. Because co-working businesses may be able
to configure their space to accommodate a higher density of users per square foot,
they may be able to generate more revenues through increased intensivity.

For each quarter in our sample period, we shift the 10-year lease rate until the
long-short space strategy breaks even (zero profits) at 90% occupancy. We then
continue to shift the 10-year rent until the strategy achieves a 50% Sharpe ratio
(also at 90% occupancy). Next, we calculate the percentile in the distribution of
observed leases to which these thresholds correspond. The results are depicted in
Figure 11. On average, for the strategy to be profitable, the 10-year lease would
have to be struck around the bottom tercile or quartile of average market rental
rates. A firm that created new co-working spaces every quarter, or renewed
“expiring” space, would have to sustainably negotiate leases with rents in the
bottom tercile or quarter, and this would likely require skill. The message is
similar from Class A and B, despite the lower average profitability of Class A,
because Class A leases exhibit substantially greater dispersion in effective rents,
which might make it relatively easier to find “good deals” in Class A.

It is worth mentioning that the estimates in Figure 11 are likely to be optimistic
in the assumption that a below-market 10-year lease can achieve average short-
term rents in the same property. In practice, we expect that at least some of the
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Figure 10. : Sharpe ratios of long-short space strategy. The figure depicts
the time series of Sharpe ratios for a strategy in which a 10-year lease is financed
by leasing the space on a rolling quarterly basis. Ratios for class A (B) properties
are depicted in the top (bottom) panel. The Sharpe ratio is calculated by dividing
the annualized expected strategy profits in a given quarter by the corresponding
annualized standard deviation of the profits

observation error arises from unobserved quality characteristics within each Class.
Thus, it seems likely that a building featuring a below-market 10-year lease will
also be a building exhibiting below-market short-term rates.
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Figure 11. : Percentage of profitable 10-year leases in a long-short strat-
egy. The figure displays an estimate of the proportion of Class A (top) and Class
B (bottom) leases that would allow an investor to achieve different levels of prof-
itability. For each quarter in our analysis, we calculate the the 10-year lease rate
that allows the strategy to break-even (blue, solid line) or attain a 50% Sharpe
ratio (green, dashed line), and show its rank in the conditional distribution of
10-year leases given that year’s observation error variance (Table 5).

In our dataset, we were only able to identify 12 full-information leases corre-
sponding to co-working tenants (six, each, from Class A and B). Lease terms
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ranged from 10 to 21 years. The earliest lease was signed in 2007Q3 and the lat-
est in 2014Q1. When comparing the effective rents paid by these tenants to the
break-even thresholds we calculated for their their hypothesized spatial strategies,
we found that seven paid effective rents that led to better than break-even profits,
and six of these paid effective rents that led to a 50% Sharpe ratio or more. All
but one, however, signed leases with lower than average rates.

Figure 12 similarly depicts the threshold of intensification factor needed to
achieve zero profitability or a 50% annualized Sharpe ratio at 90% occupancy. The
intensification factor is used to multiply the short-term rents from the strategy.
For instance, an intensification factor of 1.20 corresponds to a 20% increase in the
short-term rents achieved throughout the 10-years the strategy is in play. Here,
the takeaway is that Class A long-short strategies call for an intensification factor
of roughly 1.25 or more if they are to be profitably implemented throughout our
sample period. Because, until 2013, the strategy was generally profitable in Class
B spaces, the required intensification in such spaces is smaller. Note, however,
that since 2013 this has markedly changed.

In practice, skill at obtaining space at cheaper prices and intensification of use
may be combined. Overall, our analysis allows us to quantify metrics that would
translate into a profitable strategy as well one that would mitigate risk. We
re-emphasize that our focus here is on the spatial component of the co-working
strategy. To the extent that services are key to co-working profitability, its risk
profile might better resemble that of service intensive real estate (e.g., hotels).

V. Conclusion

Rental income is fundamental to the valuation and return dynamics of real
estate investments, and rental lease contracts dictate effective rent terms and
cash flow duration. However, relatively little work has been done to explore how
the prices of newly originated leases with different maturities evolve over time.
We use data on Manhattan rental transactions from Compstak during 2005-2016
to estimate a model of the evolution of the term structure of lease rates over the
business cycle.

Estimated model dynamics imply a term structure of forward lease rates that is
often upward sloping, and more likely (than not) to be concave. These attributes
are more pronounced for Class A leases. This is consistent with high, but decel-
erating, rental growth expectations that are tempered by eventual same-building
quality depreciation or obsolescence.

Despite allowing for three types of shocks to impact the term structure, the
best model fit corresponds to one where a single factor drives lease rate dynamics.
The best fit dynamics describe a market where, when the economic environment
changes unexpectedly, the “shock” is felt first in long-dated components of newly
issued leases and then transmitted to shorter-maturity components in subsequent
quarters. Shocks, after their arrival, take a couple of quarters to be fully incor-
porated into leases, suggesting that the space market suffers from informational
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Figure 12. : Required intensification factor for profitable long-short
strategy. The figure displays the factor by which short term lease rates must
be multiplied for the strategy to achieve different levels of profitability (zero-
profit or 50% Sharpe ratio). The top graph corresponds to class A properties,
while the bottom one depicts the required intensification factor for class B leases.
Occupancy of 90% is assumed.
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inefficiencies.
Our model can be used to assess the profits and returns of leasing strategies.

We apply it to conclude that the spatial component of co-working (i.e., acquiring
space on a long-term basis and then selling it to short-term tenants) is, on its
own, generally not profitable in NYC. To make co-working profitable, a long-short
leasing strategy must be accompanied by advantageous acquisition of the space,
and/or its usage intensification, and/or a profitable service component.
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Appendices

Some helpful results on model dynamics. The key rate model itself takes the
form:

Ft+1 = ρFt + F̄ + Σε̃t+1.

where Ft = (Ft,0, Ft,5, Ft,10)′ is the vector of key rates and εs is a three-vector of
independent and normal Gaussian random variables. Setting FU ≡ (I − ρ)−1F̄ ,
one can rewrite the dynamics of the key rates as follows

Ft+1 − FU = ρ(Ft − FU ) + Σε̃t+1,(A1)

which describes the demeaned dynamics of the key rates.
The distribution of future key rates is obtained by iterating equation (A1):

Ft+τ − FU = ρτ (Ft − FU ) +
τ∑
j=1

ρj−1Σε̃t+τ−j+1.(A2)

From this, one can immediately deduce the Gaussian distribution of Ft+τ :

Ft+τ ∼ FU +N

(
ρτ (Ft − FU ),

τ∑
j=1

ρj−1ΣΣ′(ρ′)j−1

)
.(A3)

A1. Distribution of long-short portfolio profits

To simplify matters, we assume that each rental period corresponds to a quarter
(i.e., rents are paid quarterly), but rents are quoted in monthly terms. We do this
to match the estimated model dynamics to the lease contract. Consider a strategy
where, beginning at date t, a short position is undertaken in a long-term lease
with maturity of T years, together with a rolling long position in a one-quarter
lease every quarter from date t until one quarter prior to T . The question at
hand: What is the expected distribution of cash flow?

To address this, first consider the fixed (short) leg of the transaction (the long-
term lease) and denote the model-implied monthly lease rate at date t for a T -year
lease as `t(T ). The forward equivalence relation implies that

3

4×T∑
m=1

dj,tv
′
j · Ft = 3`t(T )

4×T∑
m=1

dj,t,

where dj,t is the price of a j-quarter strip bond at date t and vj is the vector of
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weights applied to the key-rate vector, Ft to arrive at a j-month forward price
(e.g., v′1 = (0.05, 0.95, 0) and v′30 = (0.5, 0.5, 0)). The factor of 3 corresponds to
the fact that the lease rate is quoted as monthly but each lease period is a quarter.
Thus,

`t(T ) =

∑4×T
m=1 dj,tv

′
j · Ft∑4×T

m=1 dj,t
.(A4)

Each quarter starting at date t the strategy rolls over a new one-quarter lease.
The profit at date t+τ is therefore 3(v′1·Ft+τ−`t(T )). To assess the overall strategy
profitability and its riskiness, one has to settle on a convention for accumulating
them over time. This could be done by discounting the strategy cash flow to date
t, capitalizing it forward to date t+T , or even using a simple sum. Each approach
has its benefits and shortcomings. Consider for now the sum of strategy profits,
discounted to date t:

P (t, T ) = 3

4T∑
τ=1

dτ,t

(
v′1 · Ft+τ−1 − `t(T )

)
.(A5)

Correspondingly, from equation (A2),

Et[P (t, T )] = 3
4T∑
τ=1

dτ,t

(
v′1 ·

(
FU + ρτ (Ft − FU )

)
− `t(T )

)
.(A6)

To calculate the variance, first observe that

Ft+1 − Et[Ft+1] = Σε̃t+1

Ft+2 − Et[Ft+2] = ρΣε̃t+1 + Σε̃t+2

Ft+3 − Et[Ft+3] = ρ2Σε̃t+1 + Σρε̃t+2 + Σε̃t+3

...

Ft+S − Et[Ft+S ] = ρS−1Σε̃t+1 + ΣρS−2ε̃t+2 + ρS−3ε̃t+3 + . . .+ Σε̃t+S

Ft+τ − Et[Ft+τ ] =

τ∑
τ ′=1

ρτ−τ
′
Σεt+τ ′

From this telescoping pattern, one can rewrite any sum over demeaned forwards
as a sum over distinct shocks:

S∑
τ=1

w′τ ·
(
Ft+τ − Et[Ft+τ ]

)
=

S∑
τ=1

( S∑
τ ′=τ

w′τ ′ · ρτ
′−τ
)

Σε̃t+τ .
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Because the shocks are orthogonal, one can calculate the variance as:

VARt

[ S∑
τ=1

w′τ ·
(
Ft+τ − Et[Ft+τ ]

)]
=

S∑
τ=1

( S∑
τ ′=τ

w′τ ′ · ρτ
′−τ
)

ΣΣ′
( S∑
τ ′=τ

w′τ ′ · ρτ
′−τ
)′

Returning to the calculation of the profit variance using equation (A2), identify
wτ with 3dτ,tv1 and set S = 4T to yield

VARt[P (t, T )] = 9

4T∑
τ=1

( 4T∑
τ ′=τ

dτ ′,tv
′
1 · ρτ

′−τ
)

ΣΣ′
( 4T∑
τ ′=τ

dτ ′,tv
′
1 · ρτ

′−τ
)′
.(A7)

NOTE: To calculate these statistics for the forward capitalized profits we would

replace dτ,t with
dτ,t
d4T,t

. If the aggregated strategy profits are measured as a simple

sum, we’d replace dτ,t with 1.

*
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Englund, Peter, Åke Gunnelin, Martin Hoesli, and Bo Söderberg. 2004.
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