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Macroeconomic Conditions, Systematic Risk Factors, and the
Time Series Dynamics of Commercial Mortgage Credit Risk

Abstract

I study the time series dynamics of commercial mortgage credit risk and the unob-
servable systematic risk factors underlying those dynamics. A first-passage model with
equilibrium macroeconomic dynamics is presented, and the default hazard rate is solved.
The solutions are then put into a state space form and estimated with real world com-
mercial mortgage performance data using extended Kalman filter. Results show large
variations of credit risk over time in the commercial mortgage market, and that these
variations are well explained by two mean-reverting latent risk factors. One is the
macroeconomic factor and the other is a commercial property market-specific factor.
The model and the results will be useful in default risk prediction, hedging and pricing.

Keywords: Credit risk, commercial mortgage, first-passage model, default hazard rate, Cox
proportional hazard model, state space model, extended Kalman filter.
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1 Introduction

Credit risk not only varies across different firms or borrowers, but also changes over
time depending on economic environments. Understanding the time series dynamics of
credit risk is equally, if not more, important than knowing the cross sectional variations in
credit risk. For example, portfolio risk managers want to have the ability of distinguishing
“good” times from “bad” times in addition to telling “good” assets from “bad” assets;
regulators and policy makers desire to know how fluctuations of credit risk in the financial
markets are related to changes in macroeconomic conditions and whether there are credit
cycles; and financial economists seek to incorporate the dynamics of systematic risk factors
into their credit risk pricing and measurement models1.

In this paper, I study the time series dynamics of commercial mortgage credit risk and
the unobservable systematic risk factors underlying those dynamics. The research tasks
are carried out within a structural model framework. Given the incomes of commercial
properties sustaining commercial mortgages are largely affected by the macro economy,
I modify the first-passage model of Black and Cox (1976) and Longstaff and Schwartz
(1995) to incorporate equilibrium macroeconomic dynamics. Aggregate economic output
and commercial property cash flows are the primitive processes in my model. The economy
has some business cycle characteristics, as modeled in Goldstein and Zapatero (1996), in that
the expected growth rate of aggregate output is mean-reverting. I model the commercial
property cash flow as determined by two unobservable variables, the state of the economy
and a commercial property market-specific factor, similar to the approach by Tang and
Yan (2006) in modelling firm cash flow. Mortgage default occurs when the cash flow of the
underlying property falls below a default boundary. I solve the first-passage time density and
default hazard rate of a representative commercial mortgage, which gives the relationship
between mortgage credit risk and the two unobservable state variables.

My empirical work takes advantage of a large commercial mortgage performance dataset
available and focuses on default probabilities. The main objective is to extract information
from real world default experience about the latent systematic factors that drive the evo-
lutions of commercial mortgage credit risk. I first use a Cox proportional hazard model to
control the heterogeneity of commercial mortgage loans and to estimate the default hazard
rate time series of a representative mortgage. The hazard rate time series are then used to
estimate the first-passage model in state space form, in which the risk free bond yield and
the mortgage default hazard rate are the two variables treated as observed. I estimate the
nonlinear state space model with extended Kalman filter. Parameter estimates reveal the
relationships between default probabilities and the risk factors, and state variable estimates

1See Wilson (1998), Jarrow and Turnbull (2000), Allen and Saunders (2003), Koopman and Lucas (2005),

and Duffie, Wang and Saita (2006) for elaborations.
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capture the dynamics of the unobservable systematic risk factors.
Empirical results show substantial variations in commercial mortgage credit risk over

time. The default hazard rate in “bad” years is 15 times as high as that in “good” years.
However, the variations are largely explained by the dynamics of the two mean-reverting
unobservable risk factors. The expected economic growth is a significant factor with long
term mean of 1.70%, volatility of 0.63% and annual mean-reversion speed of 0.46. In
addition, there is a significant commercial property market-specific factor with long term
growth rate of 1.20%, volatility of 0.6% and mean-reversion speed of 0.60. Changes of these
two factors explain over 85 percent of the variations in default hazard rates. Simulations
show that commercial mortgage default risk becomes more sensitive when the economy
turns down. Based on the model estimates, the long term mean of annual default hazard
rate is 0.06% for a newly originated loan and 2.58% for a five-year seasoned loan. Several
other findings verify the conventional wisdom. For example, empirical estimates reveal that
the insolvency threshold for default is 0.89 assuming an underwriting debt-service-coverage
ratio (DSCR) of 1.3. This is consistent with the notion that mortgage borrowers do not
default ruthlessly possibly because of high transaction cost. Moreover, significant seasoning
effect has been found. My estimates show that default hazard rate reaches its peak after
four and a half years of loan origination.

The main contribution of this research is to exploit the time series perspective of credit
risk in the commercial mortgage market. This is largely motivated by recent discussions of
dynamic credit risk modelling. For example, Wilson (1998) stresses the importance of un-
derstanding how credit risk changes over business cycles. Jarrow and Turnbull (2000) argue
for incorporating dynamics of “common economic influence” into credit risk pricing models.
Allen and Saunders (2003) suggest capital regulators to consider the banking pro-cyclicality.
Recently, Koopman and Lucas (2005) and Pesaran, et al (2005) have developed time series
models to study credit risk and macroeconomic dynamics. Duffie, Wang and Saita (2006)
estimate corporate default risk dynamics by incorporating autoregressive macroeconomic
and firm-specific covariates. My research follows this line of thinking, but uses a structural
model to examine the time series dynamics of credit risk. The estimated model is useful
in predicting long term dynamics of credit risk. It also provides hedging implications for
portfolio credit risk. Moreover, pricing of commercial mortgages can be conducted with
the estimated default probabilities and the transformation of real measure into risk neutral
measure implied by my structural model.

The mortgage default risk literature has long incorporated interest rate and property
market growth rate as systematic factors in the mortgage valuation and default prediction
models (See, e.g. Kau et al 1987, Titman and Torous 1989, and Deng, Quigley and Van
Order 2000). However, the emphasis has not been put on the time series properties of
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default risk. Further, there is a gap between theoretical default risk models and empirical
default estimations in treating the systematic risk factors. On one hand, theoretical pricing
models incorporate the dynamics of these risk factors, but on the other hand empirical
estimations only apply reduced-form approach to put ex post realizations of these factors
into the model and thus miss the dynamics of these factors. Here I bridge the gap by
solving a structural model and then estimate the structural model in state space form. The
dynamics of the risk factors is estimated within my integrated model.

Another important feature of the current study is that it studies unobservable risk
factors. Recent research has found that there are a small number of latent variables playing
fundamental roles in the economy, and that many of the observable variables are determined
by these latent factors (Bai and Ng 2004). In fact, economic theories have long found it
useful to explain observed economic data by some fundamental unobservable factors 2.

My empirical approach is similar to that of Duffee (1999), who uses extended Kalman
Filter to estimate the default intensity process of corporate debt from corporate and treasury
bond yields. The main difference is that Duffee (1999) uses a reduced-form credit risk pricing
model, which directly assumes the default intensity to follow an exogenously given process.
I pay more attention to the economics of default by using a structural model.

While the research mainly helps us understand the long term dynamics of systematic
credit risk, it also considers the interactive impact of idiosyncratic risk factors and system-
atic risk factors on individual commercial mortgage loan default. The Cox proportional
hazard model used in the study helps identify the effects of loan specific characteristics on
default. For example, estimates show substantial variations in default hazard rate across
geographic regions; maturity and amortization terms are found to be negatively correlated
with default hazard rate; and certain property types such as hotel and healthcare show
significantly elevated default risk. These estimates add to the existing literature additional
information on cross sectional properties of default risk. They are useful in industrial ap-
plications.

The rest of the paper is organized as follows: the next section reviews existing litera-
ture closely related to my research. Section 3 presents the first-passage model. Section 4
describes my empirical methodologies, and section 5 reports data and results. Conclusions
and discussions are in a final section.

2For example, the arbitrage pricing theory (APT) of Ross (1976) assumes the existence of a set of

theoretically unidentified common factors underlying all asset returns. Most term structure models of interest

rate including Vasicek (1977) and Cox, Ingsoll and Ross (1985) assume an unobservable “short” rate. In fact,

Stambaugh (1988) derives the conditions under which an affine term structure model implies a latent-variable

structure for bond returns.
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2 Related Literature

My research questions are largely motivated by recent discussions in the literature about
the time series dynamics of credit risk in corporate debt and bank loans. I merge the two
branches of credit risk literature, credit risk pricing studies and default prediction studies,
in forming an integrated default risk model.

2.1 Credit Risk Dynamics and Credit Cycles

How credit risk changes over time has been an important topic in corporate credit risk
literature. Early research focuses on the determinants of default rates and credit spreads.
For example, Altman (1990) examines the relationship between changes of business failure
rates and changes of macroeconomic variables such as GNP, money supply and market
index. Longstaff and Schwartz (1995) and Duffee (1998) study how changes in treasury
yields affect changes in corporate credit spreads.

Later on, researchers explore the characteristics of credit risk changes, especially the
cyclical patterns. For example, Carey (1998) documents significant differences in default
rates for “good” years, as compared to “bad” years. Wilson (1997, 1998) finds cyclical
default rates and stresses the importance to develop models that account for changes of
default risk over the business cycle 3. Allen and Saunders (2003) emphasize the importance
of pro-cyclicality in the banking system and argue that capital regulations must take into
account the cyclical fluctuations in credit risk to avoid amplification of the pro-cyclicality.
Erlenmaier and Gersbach (2001) find both the levels and standard deviations of default
rates vary throughout the business cycle.

Based on these observations, researchers have recently developed models to try to cap-
ture the time series dynamics of credit risk. Gordy (2003) presents a theoretical risk-factor
model for bank loan default risk in the spirit of the APT model of Ross (1976). Koop-
man and Lucas (2005) and Koopman, Lucas and Klaassen (2003) apply the unobserved
components model to empirically estimate default cycles. They find evidence of 10 year cy-
cles in US business failures and cyclical co-movements between GDP and business failures.
Pesaran, et al (2005) develop a vector autoregressive model to study credit risk profile of
commercial banks and macroeconomic dynamics. Hose and Vogl (2005) directly estimate an
autoregressive model with exogenous macroeconomic input for default probabilities. Duffie,
Wang and Saita (2006) emphasize the needs of a dynamic approach in order to make multi-
period predictions of corporate default. They estimate conditional probabilities of corporate
default, incorporating autoregressive macroeconomic and firm-specific covariates, and show

3Even before that, Blume, Keim and Patel (1991) and Blume and Keim (1991) conjecture that the

seasoning effect found in corporate default might be a manifestation of business cycle effect.
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that their model outperforms other static models in out-of-sample predictions.
The mortgage default risk literature has long incorporated systematic risk factors in the

models. Interest rate and property value growth rate are two widely used variables. How-
ever, the emphasis is placed on either the ability of the pricing models to explain observed
credit premium (See, for example, Kau et al 1987, Titman and Torous 1989, Schwartz
and Torous 1992, and Childs, Ott and Riddiough 1996) or the cross sectional differences
in default behavior (See, for example, Vandell et al 1993, Deng, Quigley and Van Order
2000 and Ambrose and Sanders 2002). A few exception are Gabriel, Rothberg and Nothaft
(1989), Maxam and Fisher (2001) and Riddiough (2004), which use simple regression mod-
els to study the determinants of MBS (CMBS) credit premium. Therefore, the time series
properties of default risk are under-studied, especially from a dynamic perspective.

2.2 Credit Risk Pricing

A vast literature has been developed for credit risk pricing, which includes two strands
of models. The structural models emphasize the reason why firms default. These models
usually start with a specification of asset value process, and assume debt holders default
when asset values fall under certain default thresholds. The classic Merton (1974) model
specifies a mean-reversion asset value process and assumes interest rate is constant. The
debt value is just the asset value minus the equity value, which is similar to a call option.
Applying the Merton-Black-Scholes option pricing technique, the equity value can be easily
found out, and thus the debt value is determined.

The Merton (1974) model assumes that default only happens at maturity. Black and
Cox (1976) relax this assumption and introduced the first-passage model, in which default
happens at the first time the asset value falls under a boundary. Given an asset value process
and a default boundary, it is easy to find out the default probabilities at each point in time,
as well as the debt payment outcome at various states. The debt value is just the expected
discount value of the payments under risk neutral measure. They assume a pre-specified
time varying boundary and give the closed-form solution of debt value. Later on, Longstaff
and Schwartz (1995) generalize the first-passage model to allow stochastic interest rate.
Assuming an exogenously given constant default boundary, they give closed-form formulas
for fixed rate and variable rate debt. Relaxation of maturity-only default is very important
because in real world, corporate debt, bank loans and mortgages can default at any time
before maturity 4.

In a structural model, default probabilities are endogenously determined within the
4Important extensions of the structural model include Leland (1994), Leland and Toft (1996), Anderson

and Sundaresan (1996), Duffie and Lando (2001), Collin-Dufresne and Goldstein (2001) and Huang and

Huang (2003). See Duffie and Singleton (2003) for more discussions.
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model . In contrast, the reduced form approach directly assumes that there exists an ex-
ogenously given default intensity. For example, Jarrow and Turnbull (1995) assume default
follows a Poission process to arrive at a constant rate at each point in time 5. The advantage
of this approach is that it greatly simplifies the debt valuation. Lando (1998) shows that
with this approach, the zero-recovery defaultable bond price is just the expected discount
payoff with a discount rate of r + λ instead of the risk free rate r, where λ is the default
intensity under risk neutral measure 6. Duffee (1999) empirical studies the ability of the
reduced model in fitting observed corporate credit spreads. Apparently the reduced form
models pay less attention to the economics of why firms or borrowers default.

The mortgage credit risk valuation literature generally follows the Merton (1974) model.
For example, Cunningham and Hendershott (1984) value mortgage default insurance using
the contingent claims pricing approach. Assuming a diffusion process for house value, they
construct the Merton-Black-Scholes pricing PDE, specify the boundary conditions, and
use numerical methods to obtain the fair premiums for different FHA insurance contracts.
Kau et al (1987) generalize the model to have two factors, the stochastic property value
and risk-free interest rate. Titman and Torous (1989) and Schwartz and Torous (1992)
take the same approach to study whether the model generates default premiums consistent
with those observed in the marketplace. Further generalizations include Giliberto and Ling
(1992), Childs, Otts and Riddiough (1996), Capozza, Kazarian and Thomson (1998), and
Downing, Stanton and Wallace (2005), among many others.

Recently, Kau, Keenan and Smurov (2006) apply the reduced-from model of credit
risk to value residential mortgages with default (and prepayment) risks. They assume an
exogenously given default intensity and use particle filter to estimate the process from
mortgage performance data, and then calibrate their model to observed mortgage rates 7 8.

My study builds on the first-passage structural model of Black and Cox (1976) and
Longstaff and Schwartz (1995). Different from most structural models that use a calibration
approach for empirical investigations, I follow Duffee (1999) to empirically estimate my
structural model using extended Kalman filter.

5Equivalent to a constant hazard rate and an exponentially distributed duration time.
6Other generalizations include Mandan and Unal (1996), Jarrow, Lando and Turnbull (1997), Duffie and

Singleton (1998), Jarrow and Turnbull (2000) and Mandan and Unal (2000).
7One difficulty of this approach is the adjustment of the real default probabilities estimated from default

data into risk neutral probabilities for pricing.
8In fact, Riddiough and Thompson (1993) take the similar approach of specifying exogenously given

default probabilities for their pricing model, but they use deterministic rather than stochastic functions.
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2.3 Default Prediction

Predicting default probabilities is important. On one hand, value of the debt is deter-
mined by the probability of default together with loss given default. On the other hand,
creditors and rating agencies make decisions of loan origination and bond rating directly
based on predicted default probabilities.

Early research such as Altman (1968) and Ohlson (1980) use dscriminant analysis and
probit model to form the “Z-score” and “O-score” based on accounting variables, which
later become widely accepted financial distress measures. Lennox (1999) compares discrete
choice models with the discriminant analysis and conclude that a well-specified probit or
logit model has better performance. Campbell, Hischer and Szilagyi (2006) also apply a
logit model to construct a measure of financial distress to study stock returns.

Most recent research on bankruptcy predictions uses duration analysis. For example,
Lee and Urrutia (1996) use a duration model based on a Weibull distribution of failure
time. McDonald and Van de Gucht (1999) apply a Cox proportional hazard model with
time varying covariates. Shumway (2001) also estimates a hazard model of bankruptcy with
both accounting ratios and “market-driven” variables and finds the time-varying “market-
driven” variables to play important roles in bankruptcy predictions. He also argues that
the hazard model produces more accurate predictions than does the static logit model 9.

Mortgage default prediction studies have been explosive in the past decades possibly
because of the wide availability of mortgage performance data. Early studies apply linear
regression or logit models to estimate default determinants, and only use snapshot variables
such as borrower characteristics, origination loan-to-value ratio (LTV) or contemporaneous
LTV, etc. (See von Furstenberg 1969, Campbell and Dietrich 1983, Foster and Van Order
1984, Vandell and Thibodeau 1993 and Archer et al 2002 among many others). Later
on, researchers use proportional hazard model and logit models with event-history data to
account for the path dependence of default behaviors (For example, Vandell et al 1993,
Quigley and Van Order 1995, Deng, Quigley and Van Order 2000, Van Order and Zorn
2001, Clapp et al 2001, Ambrose and Sanders 2002, and An, Clapp and Deng 2005). The
hazard model typically assumes the duration of a mortgage follows certain distribution and
models the hazard rate (conditional default probability in discrete time) as depending on
some risk factors. Empirical estimates give relationship between default hazard rate and
the risk factors.

Recent advancements in mortgage default predictions include competing risks hazard
models and models accounting for unobserved heterogeneity (Deng, Quigley and Van Order
2000, Deng and Quigley 2002, Deng, Pavlov and Yang 2005, Clapp, Deng and An 2005).

It is noteworthy that the hazard model and logit models with event-history approach
9Many more studies are reviewed in Altman, Resti and Sironi (2003) and Duffie, Wang and Saita (2006).
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take a dynamic approach that acknowledges the changes of default risk over time. However,
the emphasis is still on cross sectional differences of default risk. Further, the dynamics of
risk factors are not integrated into the reduced-form econometric models.

3 A First-Passage Model for Commercial Mortgage Credit

Risk

A commercial mortgage is a debt with income producing property(ies) such as retail
space, office, hotel or multifamily building as collateral. The mortgage borrower is obligated
to make monthly repayment of principal and interest 10. However, in each month the
borrower may choose to default, usually because of the inability to make the monthly
payment. A first-passage model is ideal to study commercial mortgage default.

I generally follow the fist-passage model of Longstaff and Schwartz (1995). An important
feature of commercial mortgage is that the borrower mainly relies on the net operating
income (NOI) from the underlying property to make monthly mortgage payment. Therefore,
I directly model the cash flow process, rather than the value process of the property. Default
occurs when the NOI of the underlying property falls under an exogenously specified default
boundary.

The income of a commercial property usually comes from rents paid by retail tenants
or firms renting the office space. It is closely related to the macroeconomic conditions.
Therefore, I model the property NOI as depending on the state of the economy and I start
with an equilibrium characterization of the economy.

3.1 The Economy

Consider a continuous-time version of a Lucas (1978) type pure exchange economy
studied by Goldstein and Zapatero (1996). The single productive technology is described
by an aggregate output process

det

et
= µtdt + σedW e

t (1)

and there is a risky security (stock) whose dividend comes exactly from the above aggregate
output. The drift of the aggregate output is stochastic and follows an Ornstein-Uhlenbeck
process

dµt = κ(µ− µt)dt + σµdW e
t (2)

10Based on pre-specified mortgage terms in the contract such as coupon rate and amortization. Some

loans are interest only during certain periods.
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where κ is a positive constant representing the mean-reversion rate of the drift towards the
long-term mean µ. σe and σµ are positive constants for volatilities of aggregate output and
its drift. W e

t is a standard Brownian motion under real measure.
Intuitively, we can think of det

et
as the GDP growth rate we observe. Given the noise,

however, we cannot observe the expected growth rate µt. Notice that in this setting, a shock
affects both the realized return in the current period and expected return in the next period.
This is consistent with what happens in the real world, e.g. when there is over-investment,
it takes time for people to make corrections. Further, the economy has some business cycle
characteristics, in that the expected growth rate is mean-reverting. The agent can invest in
the stock and gain both appreciation of the stock value and the dividend paid by the stock.
Denote the price of the stock by St, then the return of the stock is given by

dGt

St
=

dSt

St
+

et

St
dt (3)

There is also a (locally) risk-free bond accessible to the agent with zero net supply. The
bond price Bt at time t follows the following process

dBt = Btrtdt; B0 = 1 (4)

where rt is the instantaneous risk-free rate, which is determined endogenously as an equi-
librium outcome.

In this economy, there is a single representative agent who is a price taker and has a
power utility (CRRA) over consumption with the relative risk aversion parameter γ.

U(ct) =
c1−γ
t

1− γ
(5)

The agent’s problem is to choose the optimal consumption and investment to maximize
his expected life-time utility

max
{ct,πt}

E

{∫ T

0
exp(−δt)

c1−γ
t

1− γ
dt

}
s.t. dXt = πt

dGt

St
+ (Xt − πt)

dBt

Bt
− ctdt (6)

Here, πt is the amount invested in the stock, Xt represents the wealth process of the repre-
sentative agent, and δ is the subjective discount rate.

The equilibrium of the economy is characterized by

c∗t = et ∀ t ∈ [0, T ] (7)

As shown in Goldstein and Zapatero (1996), the equilibrium instantaneous risk-free
interest rate satisfies

rt = δ + γµt − 1
2
γ(1 + γ)σ2

e (8)
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or
drt = κ(r − rt)dt + γσµdW e

t

where
r = γµ + δ − 1

2
γ(1 + γ)σ2

e

which is the well-known Vasicek (1977) spot rate process. The market price of risk is
constant

θ :
µt − rt

σe
= γσe (9)

Again, following Vasicek (1977) and Goldstein and Zapatero (1996), the equilibrium
price of risk-free discount bond is

P (t, T, rt) = EQ

{
exp

(
−

∫ T

t
rsds

)∣∣∣∣Ft

}
= exp {A(t, T )−Bκ(t, T )rt} (10)

where

A(t, T ) =

[
−r +

1
2
γ2

(
2σeσµ

κ
+

σ2
µ

κ2

)]
(T − t)

+

[
r − γ2

(
σeσµ

κ
+

σ2
µ

κ2

)]
Bκ(t, T )− 1

2
γ2

σ2
µ

κ2
B2κ(t, T )

Bκ(t, T ) =
1− exp{−κ(T − t)}

κ

It can be easily shown that after some simple formula manipulation, the risk-free dis-
count bond yield depends on the state variable µt as

R(t, T, µt) = − 1
T − t

log P (t, T, µt) (11)

=
γ

T − t
Bκ(t, T )µt − 1

T − t

[
A(t, T )− δBκ(t, T ) +

γ(γ + 1)
2

σ2
eBκ(t, T )

]

3.2 The Income Producing Property

The NOI of the commercial property also depends on certain conditions specific to
the commercial property market, e.g. whether there is over-supply of commercial spaces,
whether the operating expenses systematically elevates during certain periods. For parsi-
mony purposes, I assume all these effects can be summarized by a single factor independent
of the macroeconomic factor. Therefore, the NOI of the income producing property is de-
termined by the state of the economy µt and a commercial property market-specific factor

10



ξt
11. This approach is similar to Tang and Yan (2006) in modelling firm cash flow.

dKt

Kt
= (βµt + ξt)dt + σKρdW e

t + σK

√
1− ρ2dWK

t (12)

The drift ηt = βµt +ξt is the expected NOI growth rate, which is composed of the aggregate
economy expected growth rate µt and a property market-specific expected growth rate ξt

independent of µt. β < 1 is the correlation coefficient of expected commercial property
market growth rate and aggregate economy expected growth rate. σK is a positive constant
representing the volatility of the property cash flow. ρ is the correlation coefficient between
the property cash flow process and the aggregate output process. As shown in Tang and
Yan, β = ρσK

σe
. WK

t is a standard Brownian motion processes independent of W e
t .

The commercial property market-specific expected growth rate is also stochastic with
the mean-reverting speed of λ, long term mean ξ and constant volatility σξ.

dξt = λ(ξ − ξt)dt + σξdWK
t (13)

The economics of this mean-reversion specification is: people in the commercial property
market usually make adjustments in supply and operating expenses in response to the
observed return, which drives the expected return towards a long term mean.

We can see that at each point in time, property NOI is determined by four components:
expected growth rate of the whole economy, commercial property market expected growth
rate, economy-wide shock and commercial property market-specific shock.

The primitive processes in my model are economic growth and commercial property NOI
growth processes rather than interest rate and property value processes, as in most existing
structural models. Here, interest rate process is derived from the general equilibrium of the
economy rather than exogenously given. Regarding NOI and property value, we know that
commercial property value is largely determined by its NOI, so directly modelling NOI is
potentially a better choice. In the following subsection, I’ll come back to this when I discuss
the so-called “double-trigger” of commercial mortgage default.

3.3 Commercial Mortgage Default Boundary

A typical commercial mortgage contract specifies the principal M , a fixed mortgage rate
(coupon rate) R and an amortization term T . The monthly principal and interest payment
C is determined implicitly by

M =
∫ T

0
C exp(−Rt)dt (14)

11I assume the existence of commercial properties and commercial mortgages do not affect equilibrium

pricing given commercial properties and commercial mortgages only account for a tiny portion of the macro

economy
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Every month before maturity, the mortgage borrower is obligated to make the monthly
payment. Usually commercial mortgages are balloon loans, with a maturity term S < T .
At balloon date, the remaining principal is

MS =
∫ T

S
C exp(−Rt)dt (15)

A commercial mortgage borrower usually default because he is unable or unwilling to
make the monthly payment. A natural candidate of default boundary is the monthly pay-
ment amount. However, given high transaction cost of default, I follow Huang and Huang
(2003) and Leland (2004) to specify a slightly different default boundary

KB = φC (16)

where C is the monthly mortgage payment defined above. This boundary condition specifies
that a commercial mortgage will be defaulted if the NOI of the underlying property falls
under a certain proportion of the monthly mortgage payment. The parameter φ ≤ 1 is a
control of transaction cost of mortgage default.

In the commercial mortgage credit risk literature, an important concern is the “double
trigger” of default, which means the insolvency condition KB = C and the net worth
condition VB = H are both important for default (see Riddiough 1991, Goldberg and
Capone 2002 and Tu and Eppli 2002). Here, I only consider the insolvency condition. This
is partly for the tractability of the model. However, there are other good reasons to focus
on the insolvency condition. First, commercial property value is calculated as its cash flow
divided by the market capitalization rate and is largely determined by its NOI. Therefore,
the insolvency condition and the net worth condition are closely related. Second, from a
practical point of view, the tangible monthly cash flow is well reflected on the mortgage
holders accounting book, and thus it is easy to believe that mortgage holders make their
default decisions based on observable cash flow conditions. This is consistent with the fact
that insolvency condition expressed as debt-service coverage ratio (DSCR) is found to be
the most relevant for commercial mortgage default event according to Moody’s.

The default boundary here is assumed to be exogenously given. A more elegant treat-
ment should specify an endogenously determined default boundary as in Leland (1994),
Leland and Toft (1996) and Duffie and Lando (2001). However, in the above mentioned
endogenous default boundary studies, a constant default boundary proportional to the debt
coupon payment is usually derived based on assumptions such as constant interest rate,
debt roll over and constant risk premium (see, for example, Duffie and Lando 2001, p.638).
Therefore, I stick to the parsimonious specification of an exogenously given constant default
boundary.
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3.4 First-Passage Time Density

We want to know default probabilities of the commercial mortgage at each point in time
before its maturity. Given the above set up, it is straightforward to find out the default
time density, which is the first-passage time density of the stochastic property cash flow
Kt falling under the constant default boundary KB. The following proposition gives the
first-passage time density under real measure.

Proposition 1: The first-passage time density q(τ) is defined implicitly in the following
integral equation

N

(−lnX0 − L(t)
Ω(t)

)
=

∫ t

0
q(τ)N

(
L(τ)− L(t)
Ω(t)− Ω(τ)

)
dτ (17)

where N(·) denotes the cumulative standard normal distribution function, and

Xt =
Kt

KB

L(t) =

(
βµ0 + ξ0 + βµ + ξ − σ2

K

2
− σKρβσµ

κ
− σK

√
1− ρ2σξ

λ

)
t

−βµ
(
e−κt − 1

)− ξ
(
e−λt − 1

)
+

σKρβσµ

κ

(
e−κt − 1

)
+

σK

√
1− ρ2σξ

λ

(
e−λt − 1

)

Ω(t) =
β2σ2

µ

κ2

(
t− 2

1− e−κt

κ
+

1− e−2κt

2κ

)
+

2σKρβσµ

κ

(
t− 1− e−κt

κ

)

+
σ2

ξ

λ2

(
t− 2

1− e−λt

λ
+

1− e−2λt

2λ

)
+

2σK

√
1− ρ2σξ

λ

(
t− 1− e−λt

λ

)
+ 2σ2

Kt

Proof: See appendix A.

Dividing the period from time zero to time T into n equal sub-periods and discretizing
the above integral equation give the following system of linear equations, which can be
solved recursively to find out the default time density.

N(ai) =
i∑

j=1

qiN(bi,j), i = 1, 2, · · · , n (18)

qi = q

(
i
T

n

)
· T

n

3.5 Default Hazard Rate (Default Intensity)

Default hazard rate is a key variable studied in the mortgage default prediction litera-
ture. It is the mean arrival rate of default during [t, s] conditioning on the mortgage not
defaulted at time t 12. In real world, we observe default hazard rate based on pools of

12In discrete time, it is just the conditional default probability.

13



mortgages. We want to solve the relationship between default hazard rate and the risk
factors in our model, so that we can use the real world data to estimate parameters of the
model and learn the dynamics of risk factors and hazard rates. The following proposition
gives the closed-form solution of default hazard rate in my model.

Proposition 2: The default hazard rate under real measure is

ht =
Pr(t ≤ T < t + 1;µt, ξt)

1− Pr(T < t;µt, ξt)
(19)

where

Pr(t ≤ T < t + 1;µt, ξt) =
∫ +∞

1

∫ 1

0

| lnxt + at|√
2πs3σK

exp
{
−(lnxt + at)2

2sσ2
K

}
ds

1√
2πtσK

exp

{
−(lnxt − lnx0 −

∑t
i=1 ai)2

2tσ2
K

}
dxt

Pr(T < t;µt, ξt) = Pr(T < 1) + Pr(1 ≤ T < 2) + · · ·+ Pr(t− 1 ≤ T < t)

and

at = βµt + ξt − σ2
K

2
+

σKρβσµ

κ

(
e−κt − 1

)
+

σK

√
1− ρ2σξ

λ

(
e−λt − 1

)

Proof: see appendix B.

To make the relationship between hazard rate and the two state variables easy to see,
we can write the hazard function as

ht = f(µt, ξt;σK , σµ, σξ, ρ, β, κ, λ, µ, ξ, φ) (20)

where f is a nonlinear function that maps the two state variables µt and ξt into hazard rate
ht.

For pricing purposes, we can solve default probabilities under risk neutral measure in my
model. The only thing we need to do is to transform the expressions of primitive processes
from real measure into risk neutral measure using change of measure based on the result
of market price of risk in equation (9). Then we can apply the same approach as above.
Here I only give the hazard rate solutions in real measure because in the following empir-
ical estimations, I will focus on default probabilities observed from real world commercial
mortgage default experience.

4 Empirical Methodology

The objectives are to learn the evolutions of default risk over time based on observed
commercial mortgage defaults, and to extract information about the latent systematic fac-
tors driving the default risk dynamics. Solutions of the structural model in the previous

14



section can be put into a state space form and we can use real world data to estimate
the model. To help identify the model, I use risk-free bond yield as another measurement
variable in addition to default hazard rate.

4.1 The State Space Model

At time t we observe commercial mortgage default hazard rate ht and risk-free bond
yield Rt. These two observable variables are functions of the two latent state variables µt

and ξt. Denote Zt = (Rt, ht)′ and St = (µt, ξt)′, we can express the above structural model
in a state-space form. Suppressing the dependence of the model on the parameters to be
estimated, the measurement and transition equations are

Zt = z(St) + εt; Et−1(εtεt
′) = Σ (21)

St = α + TSt−1 + ηt; Et−1(ηtηt
′) = Φ (22)

The transition equation (22) depicts the dynamics of the two state variables given in
equations (2) and (13). They are simple AR(1) processes. Notice St is not directly observ-
able. The non-linear function z(St) in the measurement equation (21) maps the two latent
state variables into the observable bond yield and mortgage hazard rate. Therefore, we can
infer the dynamics of the latent variables from the time series of the measurement variables.
The innovations in the transition equation are normally distributed based on our model set
up in equations (2) and (13). I further assume the innovations in the measurement equa-
tion are also normally distributed, reflecting the random observation errors of these two
variables.

The model is estimated with extended Kalman Filter as discussed in below. To apply the
extended Kalman filter, I use the first-order Taylor expansion to linearize the measurement
equation (21)

z(St) ≈ z(S∗t )− LtS
∗
t + LtSt (23)

where

Lt =
∂z(St)
∂St

∣∣∣∣
St=S∗t

4.2 The Cox Proportional Hazard Model

In real world, commercial mortgage loans are heterogeneous, e.g. they are in differ-
ent region, backed by different properties, and have different mortgage terms. Existing
studies have found loan characteristics to be important determinants of commercial mort-
gage default. Therefore, I use the Cox proportional hazard model to control for covariates
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of individual mortgage loans and estimate the hazard rate time series of a representative
commercial mortgage.

The Cox proportional hazard model is widely accepted in the literature as an effective
tool to study mortgage prepayment and default (See, for example, Green and Shoven 1987,
Deng, Quigley and Van Order 2000). In the Cox model, the life of a mortgage loan (duration
T ) is the random variable which is usually assumed to follow a certain distribution. In each
month, the mortgage loan has a risk (hazard) of ending its life.

The Cox model starts with the specification of the hazard function

hi(t, T ) = h0(T ) exp(Xi,tβ) (24)

where t is calendar time and T is duration. h0(T ) is the baseline hazard function shared
by all loans. It represents the default rate of a typical loan during the interval [T, T + 1]
conditioning on not defaulted at duration T . Xi,t are covariates to control heterogeneity of
individual mortgage loans. They shift the baseline hazard up or down depending on their
values. Covariates can be both time constant and time-varying.

In each month, the hazard rate of a mortgage loan is determined by economic funda-
mentals, loan specific characteristics and seasoning. Therefore, we can further separate time
varying covariates from time constant covariates, and write the hazard function as

hi(t, T ) = h0(T ) exp(Di,tα + Ziβ) (25)

where Z is a vector representing time constant idiosyncratic risk factors such as property
type, region and maturity term. Di,t = (di,1, di,2, . . . , di,t) is a series of time varying dummies
and thus β captures systematic risk, which evolves over time. h0(T ) shared by all loans
is a function of duration T , which represents the seasoning effect. Following Schwartz
and Torous (1989), I assume the conditional distribution of the duration time T (on the
covariates) follows a log-logistic distribution and thus the baseline hazard function is13

h0(T ) =
νω(νT )ω−1

1 + (νT )ω
(26)

4.3 Estimation Methods

I estimate the Cox proportional hazard model using the maximum likelihood estima-
tion method presented in Kalbfleisch and Prentice (1983/2002) and implemented by Deng,
Quigley and Van Order (2000) 14.

13Although in the corporate credit risk literature some researchers argue that the observed seasoning effect

might be a manifestation of the business cycle effect (see, for example Blume, Keim and Patel (1991) and

Jonsson and Fridson (1996), there is general consensus that the seasoning effect prevails in mortgages.
14Deng, Quigley and Van Order (2000) have competing risks (prepayment and default) in their model and

they estimate a flexible baseline using a semi-parametric method.
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The MLE involves the survival function, which is

Vi(t, T ) = exp
{
−

∫ T

0
hi(t, s)ds

}
(27)

The likelihood function is

L =
T∏

l=0

{
∏

i∈Di

(Vi(t, T + 1)− Vi(t, T ))
∏

i∈Ci

Vi(t, T + 1)} (28)

with Di be the set of labels associated with individuals failing at tl, and Ci be the set of
labels associated with individuals censored in [tl, tl+1). The asymptotic covariance of the
MLE estimates is calculated with the information matrix using the BHHH method (Greene
2000, p.132).

The hazard model estimation gives the time series of default hazard rate of a represen-
tative commercial mortgage Ĥt = (ĥ1, ĥ2, . . . , ĥt), which is the measurement variable ht in
the state space model.

The state space model is estimated using the extended Kalman filter. The nonlinear
function z(St) is linearized with equation (23) at the 1-month ahead forecast of St and
Φ is evaluated at the contemporaneous prediction of St. After linearization, the standard
Kalman filter recursion is used.

The Kalman filter requires initialization. Since we don’t know the exact distribution of
the initial state vector S1, I apply a diffuse initialization, which assumes arbitrary means
and infinite variances of the initial state vector.

Parameters of the state space model are estimated using maximum likelihood estimation
method. The log-likelihood function with diffuse initialization is

LogLd(Z) = −np

2
log 2π − 1

2
log |F∞,t| − 1

2

n∑

t=2

(log |Ft|+ v
′
tF

−1
t vt) (29)

where n is the number of time series observations, p is the measurement variable dimension,
which is 2 in my model. F∞,t = CtP∞,tC

′
t. Ft is the prediction variance V ar(Zt|Ft−1) with

Ft−1 denoting information up to t−1, and vt is the prediction error Zt−CtSt. P∞,t = TtT
′
t .

Again, the asymptotic covariance of the MLE estimates is calculated using the BHHH
method.

5 Data and Results

I access a large commercial mortgage loan performance database maintained by a mort-
gage data provider. Information are collected for nearly 60,000 commercial mortgage loans,
which all underly commercial mortgage-backed securities (CMBS). The data collecting point
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is June 31, 2003. After excluding adjustable rate mortgages (ARMs) and mortgages in
Canada, the final sample contains 49,389 fixed rate commercial mortgage loans. These
loans are originated between 1992 and 2003, and are from 355 MSAs across 54 US states
and territories. The data contains detailed information on loan characteristics and per-
formance, such as origination date, original balance, original loan-to-value ratio (LTV),
maturity date, amortization term, coupon rate, lender, property type, geography, 60-day
and 90-day delinquency dates, pay down date, losses, etc..

In order to utilize the simple Affine term structure results in equation (11), we need
yields of risk-free pure discount bond. I use the Fama-Bliss 5-year pure discount bond
yields from CRSP, and apply the seasonally adjusted CPI to make the inflation indexed
yields.

Table 1 shows the origination year distribution of the commercial mortgage sample with
respect to both number of loans and original balance. The year 1998 sees a large number of
loan origination. Loans originated after 2000 have substantially higher average loan amount
than those originated in 1992 through 1996, even taking into consideration of inflation.

I identify 1,877 defaults, which is 3.80% of the whole sample 15. Table 2 shows dis-
tribution of the sample with respect to different loan characteristics. I also calculate the
proportion of loans defaulted in each group, as shown in the third column of the table. The
most populated property type in my sample is multifamily, followed by retail and office.
Hotel and healthcare property loans have substantially higher default rates. The loans in
my sample are from 10 US regions, with those in the west coast to have lower default rates.
Most loans have amortization terms between 20 and 30 years. Less than 6% of loans have
very short (less than 10 years) or very long (over 30 years) amortization, and those loans
have lower default rates. Different from residential mortgages, most commercial mortgages
are balloon loans. Nearly 75% of loans in my sample mature in 5 to 10 years. Average LTV
of these loans are also lower than residential mortgages. The majority of loans have LTV
in the 60-80% range. Loans with very low LTV (lower than 40%) have significantly lower
default rates. The average original balance is $6.14 million, and the top 5 percent of the
sample have balances over $18 million. The simple tabulation in table 2 tends to suggest
substantial variations in default rates with respect to loan characteristics.

Table 3 presents the maximum likelihood estimation results for the time constant co-
variates of the Cox proportional hazard model. Most of the results are conforming to
expectation. For example, loans with LTV of over 80 percent have higher default probabili-
ties than the majority of the sample, which have LTV between 60 and 80 percent. Hotel and

15Also excluded from the sample are 164 balloon default loans, since balloon default is not modelled in my

model. Reasons for balloon defaults could be very different from those of term defaults, e.g. some borrowers

default at maturity date because of the inability to refinance the current loan at the balloon date given a

substantially higher interest rate environment than that at origination.
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healthcare loans are more risky than the reference group - retail loans. Loans in Southern
California (Western/Pacific) have the lowest risk across regions, while those in the South
have higher risk comparing to the reference group - Northeast/Mid-Atlantic loans. The
maturity term is negatively related with default risk. The negative relationship applies to
amortization. These two relationships are consistent with the notion that properties with
lower risk usually get more favorable loan terms. The only surprise in table 3 comes from
multifamily, which is shown to have higher risk than retail properties. This is possibly
because of the over-built of multifamily during the study period due to declining interest
rate.

Figure 1 plots the estimated seasoning effect, which shows a humped shape. Default
hazard rate increases rapidly in the first 3 (duration) years, reaches its maximum in four
and a half years, and then declines gradually. This is generally consistent with findings of
Esaki (2002), who find commercial mortgage loan default rate to increase with duration,
reach the highest level in year 4, and then have small changes until year 7. Interestingly, the
decline of commercial mortgage hazard rate after the peak year is much slower than that
of residential mortgage. The magnitude of commercial mortgage hazard rate is apparently
much higher than that of residential mortgage. The figure shows that for mortgages in a
fair year, the peak default hazard rate (with respect to seasoning) is about 2.4%, while the
100% SDA has a peak hazard rate of only 0.6%. The 5 year and 7 year cumulative default
probabilities are 2.35% and 5.06% based on these estimates.

As mentioned earlier, the focus of this paper is really on the time series dynamics of
commercial mortgage default risk. Figure 2 shows the estimated hazard rate time series of
a representative mortgage. At least four points can be taken from these results: first, there
are large variations in default risk over time. The annual default hazard rate of a five-year
seasoned commercial mortgage could be as low as 0.39% (16.11% of sample average) in good
years, and could be as high as 5.78% (238.20% of sample average) in bad years. Second,
the changes in default hazard rate is generally consistent with changes in macroeconomic
conditions, e.g. default risk increase substantially during 2001 and 2002, when the economy
enters a recession. Third, the observed high default hazard rate during 1997-1998 when
the economy is strong points to the importance of the market-specific factor. In fact, large
scales of foreign investment enters the US commercial real estate market in the 1990s, and
the Asian financial crisis and the Russian financial crisis cause a lot of problems in those
properties. Last, default hazard rate tends to have a cyclical movement, going down in
1994-1996, rising up in 1997-1998, and going down again in 1999-2000 and rising up again
in 2001-2002.

Figure 3 plots the 5-year risk-free pure discount bond yields. The bond yields tend to
move oppositely with the default hazard rates shown in figure 2. Notice that in my model
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low bond yield implies lower expected economic growth rate. Therefore, this is a sensible
pattern.

Table 4 reports the core results of the paper. For identification purposes, I do not
estimate all the free parameters in my model. Instead, I choose to pre-specify some of the
parameters, e.g. the volatilities of economic growth and property income growth σe and σK

are fixed at 8%, the risk aversion parameter γ is chosen to be 4 and the subjective discount
factor δ is 4%. These values are conforming to what we observe or what people use in the
literature. The estimates show the existence of two significant mean-reverting unobservable
state variables underlying commercial mortgage default. The expected economic growth
has a long term mean of 1.70%, volatility of 0.63% and annual mean-reversion speed of
0.46. The commercial property market-specific factor has a long term growth rate of 1.20%
and mean-reversion speed of 0.596. The volatility of this property market-specific factor
is 0.6%. As shown in the table, dynamics of default hazard rate can be largely explained
by the dynamics of these two mean-reverting latent variables. The root mean square error
(RMSE) is less than 15% of the sample mean, which means changes of these two factors
explain over 85 percent of the variations in default hazard rate.

Based on the model estimates, the long term mean of spot interest rate is 4.4%, and
the long term mean of annual default hazard rate is 0.06% for a newly originated loan
and 2.58% for a five-year seasoned loan. Table 5 also shows default hazard rates of a
representative mortgage with different seasoning under a favorable environment and under
a bad environment.

Simulations shown in figure 4 tells that commercial mortgage default risk is more sen-
sitive when the economy is in downturn than at a time when the economic growth is high.
There is also a negative relationship between default risk and interest rate, conforming
to the existing literature (Duffee 1998 and Longstaff and Schwartz 1995). This provides
hedging implications for portfolio credit risk.

The final point to take from the empirical estimates is that the insolvency threshold for
default is 89% of the monthly mortgage payment, assuming an underwriting debt-service-
coverage ratio (DSCR) of 1.3. This is calculated from the relationship x0 = K0

φC = DSCR
φ .

Since the estimated x0 is 1.46, φ is 0.89. This result is consistent with the observation that
mortgage borrowers do not default ruthlessly possibly because of substantial transaction
cost of default.

6 Conclusions and Discussions

There are increasing concerns of the time series dynamics of credit risk among both
academic researchers and industrial practitioners. This is because credit risk not only varies
across firms or borrowers, but also changes over time depending on some macroeconomic
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and systematic risk factors. Understanding the time series dynamics of credit risk and their
underlying risk factors is important to portfolio risk management, hedging and pricing.

The mortgage credit risk literature has extensively examined the cross sectional differ-
ences in default risk, but left the time series properties of default risk unexplored. I intend
to fill this gap by studying the time series dynamics of commercial mortgage credit risk and
the unobservable systematic risk factors underlying those dynamics.

I present a first-passage structural model for commercial mortgage credit risk and solve
the default hazard rate under real measure. The model is then estimated with commercial
mortgage default data using extended Kalman filter. The estimates show the existence
of two significant mean-reverting latent factors underlying commercial mortgage default.
The expected economic growth is one factor. In addition, there is a significant commercial
property market-specific factor. The variations in default hazard rate are well explained by
the dynamics of the two mean-reverting latent factors. Empirical estimates also confirm
the notion that there is substantial transaction cost of default.

From a methodological perspective, I bridge the gap between theoretical credit risk
models and empirical default estimations by providing an integrated credit risk model.

Future research can go several directions. First, more measurement variables can be
brought in to identify all the free parameters in the model, e.g. incorporating the dynamics
of the whole term structure of interest rate will provide additional degrees of freedom.
Second, more elements can be incorporated into the current theoretical framework, e.g. an
exogenously given inflation process as modelled in Wachter (2006) is desirable, and mean-
reverting asset risk premium (Huang and Huang, 2003) might also better approximate
real world situations. Third, pricing is definitely an interesting topic. Given the current
structure of the model, we can extend the study into commercial mortgage pricing once data
is available. In addition, an important application of my model will be in the residential
mortgage market. In fact, with much longer data series in residential mortgage market, we
can perform empirical tests of credit cycles. Last, we may empirically improve the current
state-space model by allowing non-Gaussian disturbances. Importance sampling can be
used to estimate such models (Durbin and Koopman 2001 and Koopman, Lucas and Daniel
2005).
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A Proof of Proposition 1

We have the set up in equations (12), (13) and (2) as follows

dKt

Kt
= (βµt + ξt)dt + σKρdW e

t + σK

√
1− ρ2dWK

t (30)

dµt = κ(µ− µt)dt + σµdW e
t (31)

dξt = λ(ξ − ξt)dt + σξdWK
t (32)

Define Xt = Kt
KB

, then

dXt
Xt

= (βµt + ξt)dt + σKρdW e
t + σK

√
1− ρ2dWK

t (33)

lnXt − lnX0 =
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0
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s
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Rewrite equation (31) and (32) as

µt = µ0 + e−κt

∫ t

0
κµeκsds + e−κt

∫ t

0
σµeκsdW e

s (34)

ξt = ξ0 + e−λt

∫ t

0
λξeλsds + e−λt
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0
σξe

λsdWK
s

Substitute µs and ξs in equation (33) by the above, and rearrange items, we have
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Hence, equation (35) can be further written as

lnXt − lnX0 =
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Therefore,

E(lnXt) = lnX0 + L(t) (38)
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So, lnXt ∼ N (lnX0 + L(t),Ω(t)), and according to Buonocore, Nobile and Ricciardi
(1987, 2.2a), the first-passage time density q(τ) is defined implicitly in the following integral
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equation 16
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where N(·) denotes the cumulative standard normal distribution function.
Q.E.D.

B Proof of Proposition 2

Define Xt = Kt
KB

, again we have

dXt
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and orthogonizing the Brownian motions in the last integration term, we get

lnXt − lnX0 =
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So,

lnXt+1 − lnXt = at + σKW (1) (45)

or
lnXt+1 − lnXt − at

σK
= W (1) ∼ N(0, 1)

Since Xt+1 = 1 is the boundary condition, according to Grimmett and Stirzaker (2001,
p. 526), the first-passage time probability in the time interval [t, t + 1) is
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16A minor issue is that I assume t can be infinity here. However, if we impose the upper bound of t, e.g.

the maturity term of the mortgage, the only thing we need to do is to add boundary conditions.
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Therefore,
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Finally, the hazard rate is

ht = lim
∆t−→0+

Pr(t ≤ T < t + ∆t|T ≥ t;µt, ξt)
∆t

(49)

In discrete time, we have

ht = Pr (t ≤ T < t + 1|T ≥ t;µt, ξt) (50)

=
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Q.E.D.
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Fig. 1. Estimated Seasoning Effect of Commercial Mortgage Loan Default

This figure plots the hazard rates of a commercial mortgage over duration time, which shows the
seasoning effect of default. The baseline parameters ν̂ and ω̂ are 0.065 and 2.610 respectively, and
the covariates are at sample mean. The hazard rate reaches its maximum at 54 month (4.5 years).
The 5-year cumulative default probability is 2.35%, and the 7-year cumulative default probability is
5.06% based on these estimates.
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Fig. 2. Estimated Hazard Rate Time Series of a Representative Mortgage

The figure plots the hazard rates of a 4.5-year seasoned representative commercial mortgage over
calendar time, which shows the time series dynamics of default. The hazard rate varies substantially
over time from 16.11% of the sample mean to 238.20% of the sample mean.
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Fig. 3. The Time Series of the 5-year Pure Discount Bond Yield

This figure plots the Fama-Bliss (artificial) 5-year pure discount bond yields. The nominal yields
are from CRSP, and CPI is used to make adjustments to obtain the real yields.
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Fig. 4. Simulated Relationship between Hazard Rate and State Variables
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Table 1 Origination Timing of the Commercial Mortgage Loans
This table shows the origination year distribution of 49,389 commercial mortgage
loans in our study, which are underlying Commercial Mortgage-backed Securities
(CMBS).

Origination Number Percentage in Total loan Percentage in
year of loans # of loans amount($m) loan amount

1992 673 1.36 2,065 0.68
1993 1,214 2.46 5,324 1.76
1994 1,480 3.00 6,832 2.25
1995 2,151 4.36 9,699 3.20
1996 4,254 8.61 18,745 6.18
1997 6,472 13.10 36,552 12.05
1998 13,259 26.85 66,907 22.05
1999 5,660 11.46 36,001 11.87
2000 4,422 8.95 29,258 9.64
2001 4,906 9.93 45,439 14.98
2002 3,637 7.36 34,042 11.22
2003 1,261 2.55 12,515 4.13

All years 49,389 100.00 303,379 100.00
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Table 2 Characteristics of the Commercial Mortgage Loans
This table shows the compositions of the commercial mortgage loans in the study by different
loan characteristics, and percentage of loans defaulted in each category. Other property
type includes manufactured housing, self-storage, mixed-use, etc. The average loan-to-value
ratio(LTV) is 68.21%, and the average original balance is $6.14 million.

Charact- Number Percentage in Proportion
eristics Category of loans # of loans defaulted (%)

Property Multifamily 16,052 32.50 2.69
type Retail 13,181 26.69 3.85

Office 7,114 14.40 2.45
Industrial 4,471 9.05 2.77

Hotel 2,382 4.82 17.59
Healthcare 975 1.97 12.82

Other 5,214 10.56 1.84

Region Midwest/Eastern 5,175 10.48 4.70
Midwest/Western 1,950 3.95 4.92

Northeast/Mid-Atlantic 5,962 12.07 3.52
Northeast/New-England 2,807 5.68 3.28

Southern/Atlantic 9,603 19.44 4.44
Southern/East-coast 1,806 3.66 6.98
Southern/West-coast 6,266 12.69 4.82
Western/Mountain 4,642 9.40 3.79

Western/Northern Pacific 4,784 9.69 2.15
Western/Southern Pacific 6,394 12.95 1.61
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Table 2 (continue) Characteristics of the Commercial Mortgage Loans
This table shows the compositions of the commercial mortgage loans in the study by different
loan characteristics, and percentage of loans defaulted in each category. Other property
type includes manufactured housing, self-storage, mixed-use, etc. The average loan-to-value
ratio(LTV) is 68.21%, and the average original balance is $6.14 million.

Charact- Number Percentage in Proportion
eristics Category of loans # of loans defaulted (%)

Amortization less than 10 years 1,310 2.65 2.37
term 10-20 years 7,261 14.70 5.45

20-30 years 39,313 79.60 3.61
greater than 30 years 1,505 3.05 2.00

Maturity less than 5 years 2,563 5.19 2.69
term 5-10 years 36,780 74.47 3.61

10-15 years 5,320 10.77 4.72
greater than 15 years 4,726 9.57 4.82

Loan-to-value less than 40% 1,853 3.75 1.46
ratio 40-60% 6,995 14.16 4.07

60-80% 38,482 77.92 3.86
greater than 80% 2,059 4.17 3.84

Original less than $0.35m 2,471 5.00 2.23
balance $0.35m-$18.25m 44,447 90.00 3.98

greater than $18.25m 2,471 5.00 2.23

All loans 49,389 100.00 3.80
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Table 3 Maximum Likelihood Estimates of the Hazard Model
This table presents the maximum likelihood estimates of the β coefficients of the
hazard model hi(t, τ) = h0(τ) exp(Di,tα + Ziβ). The baseline function h0(T ) =
νω(νT )ω−1

1+(νT )ω is estimated jointly with the covariate parameters, and is plotted in figure
1. The α coefficients of time dummies are presented in figure 2. The reference
groups for loan-to-value ratio (LTV), property type, region, amortization term,
maturity term and original balance are 60-80%, retail, Northeast/Mid-Atlantic, 20-
30 years, 5-10 years and 0.35-18.25 million respectively. The asymptotic covariance
is calculated with the information matrix using the BHHH method.

Covariates Estimate Asy. S.E. T stat.

Loan-to-value ratio (LTV) ≤ 40% -0.030 0.080 -0.372
Loan-to-value ratio (LTV) 40-60% 0.045 0.045 0.987
Loan-to-value ratio (LTV) > 80% 0.159 0.073 2.182
Multifamily 0.212 0.047 4.547
Office -0.025 0.068 -0.372
Industrial 0.017 0.070 0.248
Hotel 1.210 0.057 21.160
Healthcare 0.988 0.078 12.692
Other 0.035 0.071 0.491
Midwest/Eastern 0.199 0.063 3.161
Midwest/Western -0.048 0.089 -0.544
Northeast/New-England -0.019 0.074 -0.262
Southern/Atlantic 0.076 0.060 1.268
Southern/East-coast 0.218 0.081 2.673
Southern/West-coast 0.225 0.064 3.500
Western/Mountain -0.007 0.075 -0.097
Western/Northern Pacific -0.362 0.083 -4.354
Western/Southern Pacific -0.539 0.085 -6.343
Amortization term ≤ 10 years 0.484 0.070 6.949
Amortization term 10-20 years 0.334 0.047 7.055
Amortization term > 30 years -0.105 0.165 -0.640
Maturity term ≤ 5 years 2.531 0.052 48.958
Maturity term 10-15 years -0.546 0.072 -7.569
Maturity term > 15 years -0.808 0.075 -10.745
Original balance ≤ 0.35 m 0.474 0.060 7.873
Original balance > 18.25 m -0.425 0.103 -4.118
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Table 4 Estimates of the State Space Model
This table presents the extended Kalman Filter estimates of the state space model.
The processes of the two unobservable state variables, expected economic growth
rate and the expected commercial property market-specific growth rate, are

dµt = κ(µ− µt)dt + σµdW e
t

dξt = λ(ξ − ξt)dt + σξdWK
t

and the measurement variables, bond yield Rt and default hazard rate ht are given
in equations (12) and (22). For identification purposes, I pre-specify the volatilities
of economic growth growth and property income growth σe and σK of 8%, the risk
aversion parameter γ of 4 and subjective discount factor δ of 4%. For bond yield,
observation error is assumed to be zero. The parameters and state variables are
jointly estimated with the extended Kalman Filter. The asymptotic covariance is
calculated with the information matrix using the BHHH method. The root-mean-
square error (RMSE) is between the fitted hazard rates and the actual hazard rates.

Parameters Estimate Asy. S.E. T stat.

The economic factor
µ 0.0170 0.0063 2.6984
κ 0.4572 0.1098 4.1639
σµ 0.0073 0.0002 36.5000

The property market factor
ξ 0.0120 0.0053 2.2642
λ 0.5962 0.0205 29.0829
σξ 0.0059 0.0009 6.5556
x0 1.4601 0.0325 44.9262
β 0.5980 0.0312 19.1667

Default series fitting
100 · √Σ22 0.0030 0.0013 2.3077

100 ·RMSE 0.0082
100 · Sample mean 0.0578
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Table 5 Default Hazard Rates Under Different Scenarios
This table presents default hazard rates of a representative commercial mortgage
with various seasoning under different scenarios based on my model estimates. The
rates are annual, and in percent.

Seasoning Optimistic Long term mean Pessimistic

1 month 0.0313 0.0617 0.1181
1 year 0.2836 0.5590 1.0696
3 year 1.1249 2.2174 4.2431
5 year 1.3070 2.5765 4.9302
7 year 1.1612 2.2890 4.3800
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