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Abstract:    Analysis of a large custom database describing U.S. multi-family buildings and their spatial 
contexts develops insight into the demand patterns for sustainable urban form, specifically consumer 
demand for density, design, distance to transit, land use diversity, and destination accessibility.  The 
current era of substantial urban growth increases the importance of these demand factors as cities both 
contribute to and provide remedies for anthropogenic pollution. Consumers concurrently search for both 
an apartment and a neighborhood optimizing preferences among the two. Results indicate that consumers 
are willing to pay for residency in denser areas, with higher frequencies of transit service, that facilitate 
the use of a variety of transit modalities, and locations with greater accessibility to and from all other 
points in the city.  Demand for more sustainable locations is evident though nuanced.   
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Introduction 

 Today, the majority of the world population resides in cities, where more than 70% of 

anthropogenic greenhouse gas emissions emanate (Kammen & Sunter 2017).  Critically, cities can 

attenuate resource usage through their spatial structures (Glaeser & Kahn 2010) as well as perpetuate 

societal inequality (Saiz 2010).  Changing development patterns and bid rent curves associated with urban 

population growth (Anas, Arnott, & Small 1998) alter relationships among individuals and firms (Hall 

1995; Baumol 1968; Ioannides & Zabel 2007).  Given increases in the demand for housing associated 

with urban population growth, multi-family housing stock rental choices can reveal consumer 

preferences, including those for more sustainable spatial structures in growing urban areas in the United 

States (U.S.).  Using data from CoStar’s Apartments.com and a variety of urban form measures identified 

by Ewing & Cervero (2010), this paper contributes to the conversation by identifying the demand for and 

economic competitive advantages created by attributes of sustainable urban form.   

  Although measuring sustainable urban form is a challenge, research from public health, 

transportation, and urban planning often uses five elemental clusters: density, diversity, design, 

destination access, and distance to transportation (Ewing & Cervero 2001 and 2010).  Advancing this 

work, a variety of metrics describing and defining these clusters have been developed (Ewing et al 2003; 

Ramsey & Bell 2014).  Research indicates that a number of these metrics are associated with positive 

outcomes such as reductions in vehicle miles traveled (Ewing & Cervero 2010) and lower morbidity and 

obesity (Ewing et al 2003).  Further, they can help assess the location efficiency of low-income housing 

tax credit (LIHTC)-eligible projects (Adkins, Sanderford, & Pivo 2017).   

 These findings are complementary with urban economic analyses indicating that the dynamics of 

urban growth and urban design influence a range of phenomena including lending decisions (Avery, 

Beeson, & Sniderman 1999), access to transportation (Glaeser, Kahn, & Rappaport 2008), long-term 

outcomes for children (Chetty, Hindren, & Katz 2016), and crime (Gould-Ellen & O’Regan 2010).  

Shiller (2007) suggests that consumer concerns about pollution may, in the long-run, create demand for 

denser pedestrian friendly urban development.  However, despite work defining sustainable urban form 

and analyses of urban growth related dynamics, demand for these attributes within growing urban places 

remains relatively under-explored.   

 In this context of urban growth and change, emerging techniques to measure components of 

sustainable urban form, connections between urban form and efficiency, and uncertainty about demand 

for urban sustainability, this paper considers the research question, what does U.S. multi-family housing 

reveal about the consumer demand for specific aspects of sustainable urban form? Its objectives are to 

use a national sample of multi-family apartment data to analyze sustainability and urban form demand 

signals in U.S. cities and to develop a systematic model of multi-family apartment rents that includes 
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neighborhood sustainability characteristics. This second objective will also make a methodological 

contribution to the housing literature by potentially reducing upward bias identified in Bajari et al (2012), 

where unobserved neighborhood attributes are correlated with traditional hedonic model independent 

variables. Results from these analyses are likely to have implications for institutional investors seeking to 

allocate capital efficiently within the multi-family housing sector. 

 Below, section II describes the literature across several fields that inform the expectations and 

empirical models generated to advance the paper’s objectives.  Section III articulates the analysis data set 

which includes hedonic, economic, urban spatial structure, and other related characteristics drawn from 

private and public sources.  Section III also summarizes the methods of analysis utilized.  Section IV 

provides a discussion of the findings and limitations of the empirical models and Section V offers 

conclusion and identifies opportunities for future related research.  

 

II. Background   

 From a finance and urban economics perspective, cities and urban spatial structure are key areas 

of study (e.g., Alonso 1968; Wheaton 1974; and Muth 1975; Wheaton 2004; Saiz 2010; Larson & Yezer 

2015).   Conversations in this literature about the drivers of urban land value (e.g., Hurd 1903 and Haig 

1926) identify the role of accessibility within transportation networks (Alonso 1960) and the importance 

of site advantage or relative location (Wendt 1957).  These concepts helped shape early research using 

hedonic applications and economic models attempting to parse the amenity/dis-amenity effects of mixing 

land uses (e.g., Kain & Quigley 1970 and Song & Knaap 2004).  Related to this work, scholars have 

discerned unique bid rent curves for different patterns of growth (Anas, Arnott, & Small 1998), 

considered urban form and congestion issues (Wheaton 1998), and identified relationships between urban 

spatial structure and credit flows (Avery, Beeson, & Sniderman 1999).   

 As urban populations grow, agglomeration and related forces change the relationships between 

people, space, and firms which influence urban shapes, opportunities, and attractiveness (Glaeser 1992; 

Furman, Porter, & Stern 2002; Kline 2010).  The interaction of growth and natural systems can lead to 

political and intergenerational conflict (Saiz 2010).  Variation in air and water quality, impervious surface 

coverage, commuting patterns, and loss of habitat and prime soils for farmland all contribute to climate 

change and quality of life (Cervero 1998).  

 With expectations of more than 2.5 billion new urban residents (globally) in coming years (UN 

2017), greater understanding about how cities grow and how residents consume space and housing has 

taken on new significance.  For example, Ioannides & Zabel (2007) finds that individual housing 

consumption was linked to the housing consumption patterns of others within a neighborhood.  This 

raises questions about the extent to which neighborhoods can be understood as substitutes or 
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complements for one another (Ferreira & Gyourko 2012).  Other work focuses on housing selection 

decisions.  Geyer (2017) observes that households make simultaneous choices between which 

neighborhood they wish to live in and which home to buy—maximizing a utility function that satisfies 

both sets of constraints.  These complex decisions have the potential to confound research using hedonic 

approaches as traditional model factors can correlate with unobserved neighborhood effects—upwardly 

biasing coefficient estimates (Bajari et al. 2012; Galiani, Murphy, & Pantano 2015).  

 As an illustration, economic research has difficulty separating out spatial characteristics from 

housing preferences associated with schools and crime. Collins & Kaplan (2017) reveal the upward bias 

of coefficients in school quality and home price analyses resulting from sorting behavior.  Their results 

suggested that both data and econometric solutions can be used to separate the effects of housing and 

neighborhood choice.  Adding additional perspective about the complexity of the housing-location 

decision, Laeven & Popov (2016) note that how and when households make education decisions 

influences home prices.  In addition, homeowners are willing to pay higher prices to avoid locational dis-

amenities.  For example, households tend to be willing to pay more for housing spatially associated with 

lower crime rates (Bishop & Murphy 2011). Further, mixed use, high-density environments have been 

shown to lessen crime, suggesting that population density and urban design collaborate to create a lively 

and desirable place (Twinam 2017).   

 Households also tend to be willing to pay more for housing to live in proximity to transit system 

options (Bowes & Ihlanfeldt 2001; Duncan 2011; Hess & Almeida 2007; McMillen & McDonald 2004). 

Likewise, firms select office spaces in more transit-accessible locations (Nelson, Eskic, & Hamidi 2015).  

Beyond schools, crime and transit, the dynamics of urban growth and urban design influence a range of 

phenomena including urban lending decisions (Avery, Beeson, & Sniderman 1999), distributions of 

poverty given access to transportation (Glaeser, Kahn, & Rappaport 2008), long-term human capital 

outcomes for children (Chetty, Hindren, & Katz 2016), and crime (Gould-Ellen & O’Regan 2010).    

 The significance of urban spatial structure in prior research highlights an important limitation of 

hedonic techniques; that is, they can produce upwardly biased coefficients resulting from correlation with 

unmeasured but important information, such as qualitative “curb appeal” in real estate studies (Bajari et al 

2012).  Some have tried to solve this problem of correlated un-observables with quasi experimental 

designs (e.g., Chay & Greenstone 2005; Greenstone & Gallahger 2008).  Others suggest using complex 

repeat sales methods to eliminate some of the correlation with un-observable attributes as well as 

identification timing issues (Bajari et al 2012).  Alternatively, researchers have worked to generate 

models that separate neighborhood and housing attribute functions (Bishop & Murphy 2011). 

 Sustainability in the urban property market has been a research focus for some time.  Eichholtz, 

Kok, & Quigley (2010) provide early financial economic analysis to identify price premiums associated 
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with eco-labeled office buildings.  Pivo & Fisher (2011) took a different approach.  They drew on Ewing 

& Cervero (2001) and Ewing et al (2009) to identify the competitive advantage created by sustainable 

office buildings through the walkability of the places in which buildings were located.  In this process, 

Pivo & Fisher (2011) demonstrate an early connection between sustainable commercial real estate and 

urban design.  Subsequent work provides additional evidence, both with respect to equity and debt 

investment (e.g., Robinson & Sanderford 2016; Holtermans & Kok 2018; and An & Pivo 2018), to 

confirm that there is durable competitive advantage created by eco-labeled commercial buildings located 

in compact urban forms.     

 There is similar evidence for eco-certified homes and homes built with sustainable technologies.  

Supply of homes with eco-certifications and sustainable technologies is associated with climate, regional 

policy, and regional economic conditions (Sanderford, McCoy, & Keefe 2017).  Like commercial 

buildings, homes built with sustainable technologies command price premiums (Dastrup et al 2012; Khan 

& Kok 2014; Kaza et al 2014).  However, the evidence connecting housing to sustainable urban form is 

less robust and the signals are opaque.  For example, there are single-market studies (Rauterkus, Thrall, & 

Hagnen 2010) and evidence from heavily regulated markets such as affordable multi-family housing 

(Pivo 2014) indicating that sustainable urban form is associated with reduced probability of mortgage 

default.  Further, Bond & Devine (2015), found evidence that eco-certified and more walkable multi-

family apartment buildings commanded price premiums.   

 Potentially conflicting with the directionality of this small evidence base, Freybote, Sun, & Yang 

(2015) studied residential condominium transactions in Portland, Oregon.  They discovered that the eco-

certifications at the “neighborhood scale” were not statistically associated with variation in condo prices. 

However, in agreement with Bond & Devine (2015), Freybote et al. did find eco-certifications for 

individual units associate with higher prices for those units. Importantly, their research belies the 

difficulty in dissociating spatial and building effects in regard to sustainability, a topic known to cross 

functional areas of study, investment practice, and management.  

 The real estate literature has explored relationships between apartment rents and the distance to 

central business district (Jaffe & Bussa 1975) as well as the distance to schools and shopping centers 

(DesRosiers, Theriault, & Menetier 1996), and other locational amenities associated with sustainable 

urban form (Valente, Wu, Gefand, & Sirmans 2005). However, measures of urban form are not solely 

described via a distance to housing unit measure.  As a result, this raises questions around household 

demand for larger-scale sustainability of place in their housing decisions—especially as Freybote, Sun & 

Yang (2015) is one of only a few papers to investigate a direct measure of sustainable urban form, albeit 

an aggregated measure of urban form rather than its distinct components.  
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 Critical to the effort of measuring urban form, research from planning, transportation, and public 

health has distilled out five component factors (the five D’s) of sustainable urban form: density, diversity, 

design, destination accessibility, and distance to transit (Cervero & Ewing 2001; Jabareen 2006).  These 

efforts describe the complexity and importance of measuring urban form (Wheeler & Beatley 2014) given 

recent re-urbanization and urban verticalization trends.  Drawing on the initial work of Cervero and 

Ewing (2001) and Ewing et al (2003), researchers have found that more compact urban development 

patterns are associated with reductions in private vehicle miles traveled and reduced greenhouse gas 

emissions (Ewing & Cervero 2001; Ewing & Murakami 2010).  There are also connections between auto-

centric urban form and residential energy use (Ewing & Rong 2008).  The literature goes on to note 

quality of life benefits via associations between sustainable urban form and individual obesity, cancer, 

and morbidity outcomes (Ewing et al 2003 and 2008).  Further, density oriented regulations mitigate 

congestion and greenhouse gas emissions (Tiwari, Cervero, & Schipper 2011) as well as improve public 

health outcomes (Ewing et al 2008). 

 Recently, Ramsey & Bell (2014) generated dozens of empirical measures of sustainable urban 

form.  Their work advanced specific metrics that capture and measure land use densities; land use and 

employment diversity; urban design and street network densities (auto/transit/pedestrian differentiated); 

transit availability, access, proximity, frequency, and density; and the accessibility of each place relative 

to all other places (Ramsey & Bell 2014).  For example, given the relationship of housing-jobs-retail 

balances to urban commuting, congestion, emissions issues, and vibrancy (Peng 1997; Cervero & Duncan 

2006), Ramsey & Bell (2014) introduced measures of residential land use density, employment densities 

across office, industrial, and retail job typologies at the Census Block Group (CBG) level. Denser CBGs 

tend to be more conducive to walking and transportation as well as to a diversity of a land uses and 

architectural types (Jacobs 1961; Jarabeen 2006).  Ramsey & Bell (2014) advanced metrics of this 

development diversity by measuring road and intersection densities.  Similar types of metrics are 

produced for employment diversity, location accessibility, and the other sustainability clusters.    

 Permitting significantly more depth to empirical investigation of demand for sustainable urban 

form, initial work using this new resource has utilized aggregations of urban form metrics to describe the 

location efficiency of LIHTC projects (Adkins, Sanderford, & Pivo 2017).  However, these metrics have 

not been applied to analyses in the broader real estate markets to explore supply or demand signals 

relative to sustainable urban form.   

 

III. Data & Methods of Analysis 

 This study begins by attempting to replicate prior related findings before examining the consumer 

demand for sustainable urban form revealed by multi-family housing.  It then builds a series of 
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econometric models assessing the demand for sustainable urban form revealed by the multi-family 

housing market using the literature summarized above and the results of the replication efforts.   

 A number of literature-based assumptions around rationality and sustainability drive the 

econometric models. This paper assumes that multifamily developers and renters are rational (Bajari et al 

2012) and that renters seek to maximize their utility function where they rent the best bundle of 

apartment, complex, and neighborhood attributes (Geyer 2017).  Additionally, the paper assumes that 

multifamily rents act as proxies for aggregate urban resident preferences.  Combining those assumptions 

with recent multi-family oriented findings (Bond & Devine 2015) and the growing consistency within the 

real estate literature about the complex value proposition of sustainability, it further assumes sustainable 

building attributes are rational for renters/developers to consider.  Finally, the paper assumes that urban 

design and spatial structure can be associated with consumer preferences (Avery, Beeson, & Sniderman 

1999) and that neighborhood sorting can create endogeneity issues in econometric modeling (Galiani, 

Murphy, & Pantano 2015) that must be addressed with new techniques or data.  

 To examine the demand for sustainable urban design, the paper assembles an analysis data set of 

institutional-grade buildings from CoStar’s Apartments.com and merges it with data describing urban 

form.  The Apartments.com data describe two years of asking rent observations for more than 50,000 

multi-family apartment buildings, representing activity across most of the largest 50 U.S. CBSAs by 

population.   

 In addition, data measuring urban form through density, diversity, design, destination access, and 

distance to transportation for this paper come from a range of public secondary sources including the 

Environmental Protection Agency, the Census Department, and the Centers for Disease Control.  In some 

instances, custom variables were created using geographic information systems programs such as ArcMap 

or the “sp” package in R.  The unit of analysis used is the multi-family complex which may be a single 

building or a related set of buildings in a complex.    

 

Multi-Family Building Data 

 Rent observations include complexes with 50 or greater units covering the years 2016 and 2017.  

Freddie Mac categorizes complexes under 50 units as part of their “Small Balance Loan” portfolio; using 

larger complexes aligns the sample primarily to institutional class complexes.   Complexes specifically 

designed for student housing, senior housing, or other specialty areas were excluded.  Markets with 500+ 

building observations were initially included; though a few major markets such as Pittsburgh, San 

Francisco and Salt Lake City were also included having only 400+ building observations.   A total of 

51,147 unique building observations were available for analysis, most with year 2016 and 2017 rent 

records.   
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 Control variables for quality, configuration type and age were constructed following guidance 

from industry standard practice and prior multi-family research (e.g., Sirmans, Sirmans, & Benjamin 

1989; Guntermann & Norbin 1987; Benjamin, Chinloy, & Hardin 2007; Benjamin, Sirmans, & Zeitz 

1997; and Hardin & Cheng 2003).  Again, following Freddie Mac’s definitions, “High Rise” buildings 

were categorized as those with 9 or greater floors and Garden-Style as those with 3 or fewer.  Since the 

presence of an elevator was not observed, the omitted category includes “walk-up” and “mid-rise” which 

are partially distinguished by the presence of an elevator.   CoStar’s Apartment Rating, a 1-5 rating 

comparable to an “A”, “B” or “C” class rating but with slightly more granularity was used as building 

level quality; these ratings take into account the physical condition of the building, services offered, and 

amenities on-site.  Age of the building was as of 2017 and, although not shown in the descriptive analysis, 

evidence of a renovation within the last 10 years is controlled for in the regressions.  

 Rent observations are captured by Apartments.com on a daily basis.  They use proprietary 

analytics to estimate monthly average asking rent per configuration.  Their algorithms include accounting 

for multiple observations of the same unit, upcoming vacancies, and other data validity methods.  Some 

are described by Florance et al (2016).  

 Based on these proprietary techniques, CoStar provided cleaned data in the form of monthly 

averages for this analysis.  Those monthly averages were consolidated into two annual observations for 

2016 and 2017 per building.  Using full twelve months of each year tends to smooth out seasonality 

issues.  Table 1 shows average rent per square foot (PSF) for each unique multi-family building, 

calculated as the weighted average per configuration type in Equation 1. 

Average Rent��

=

(Studio Units� ∗ Studio Rent�� +  1Bed Units� ∗ 1 Bed  Rent�� + 
2Bed Units� ∗ 2 Bed  Rent�� +  3 Plus Bed Units� ∗ 3 Plus Bed  Rent��)

(Studio Units� ∗ Avg Size� +  1Bed Units� ∗ Avg Size� +  2Bed Units� ∗ Avg Size� +  3 Plus Bed Units� ∗ Avg Size�)
 

 

For complex i at time t.  

 National average rent was $1.44 PSF with highs in expected markets of New York and San 

Francisco at $4.00 PSF and $3.47 PSF respectively.  Lows were observed in Cincinnati and Indianapolis 

at $0.87 PSF.  As expected, the distribution of rents shows denser urban markets commanding higher PSF 

rents with Midwest cities and cities with available land earning lower PSF rents. 

 

 Include Table 1 about here 

  

Additional Data Sources 
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 Each of the apartment building records in the analysis dataset included latitude/longitude 

coordinates.  Additional data were joined via these coordinates in one of two ways.  First, using ArcMap, 

the latitude/longitude coordinates for each building were geocoded to reflect the location of the building 

relative to its Census Block Group (CBG).  CBGs serve as the proxy for neighborhoods here following 

guidance from research (e.g., Gordon-Larsen, Nelson, Page, & Bopkin 2006) though additional models at 

the Census Tract were also tested.  Data from the EPA’s Smart Location Database (SLD) and U.S. 

Census’ American Community Survey (ACS) were merged at the CBG.  The EPA data provide detailed 

measures of the five D’s of sustainable urban form: density, diversity, design, distance to transit, and 

destination accessibility.  The ACS data specified a number of control variables.  

 Second, the latitude/longitude coordinates of the apartment buildings were used to generate new 

relative proximity metrics such as distance to or from various amenities (e.g., parks, transit stops, and 

coastline) described below.  In these cases, ArcMap spatial relations tools were used to calculate 

Euclidian distances to features and amenities, except distance to coastline was derived using Euclidian 

distance calculated by the “sp” spatial analysis package for R between each building and the U.S. Census 

“coastline” shapefile in its TIGER database (which includes the Great Lakes, Pacific Ocean, Atlantic 

Ocean and Gulf of Mexico coastlines).   

 

Smart Location Data 

 The analysis data set included all metrics from the Smart Location Database (SLD) with the 

exception of those generated from the General Transit Feed Specification (GTFS).  The GTFS data is 

restricted by transit agency participation and created significant diminution of the sample.  The SLD data 

is reported at the CBG and is clustered by the five D’s.  Multiple metrics are included in each cluster 

(Ramsey & Bell 2014).   Table 2 describes, defines, and displays the sources of each metric used in the 

econometric models described below.  Critically, the dataset does not include a central business district 

(CBD) measure.  Instead, by metrics describing various aspects of human, built space, infrastructure, and 

employment activity, the entire dataset provides a finer grained set of replacements for traditionally 

coarse CBD boundaries.   

 Include Table 2 about here 

  

 Density measures include: residential density (housing units/acre), population density 

(people/acre), employment density (jobs/acre broken out across office, retail, industrial, service, 

healthcare, and entertainment categories), as well as a combination jobs + housing density metric.  

Considering of bid-rent theory, geographic constraints noted by Saiz (2010); land price issues in denser 
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areas noted by Bostic, Longhofer, & Redfearn (2006); and default analysis by Pivo (2014), multi-family 

buildings located in denser areas are expected to command higher rents.    

Diversity measures include: jobs-housing balance and intensity metrics across the same categories 

as well as trip generating estimates based on the employment diversities.  Given findings about jobs-

housing balance and employment-congestion from Peng (1997), Wheaton (1998), and Cervero & Duncan 

(2006), urban places that are more balanced tend to be more desirable and have fewer congestion issues.  

Buildings in these areas are likely to be desirable as they limit commuting and its attendant frustrations 

and externalities.  As a result, diversity measures are expected to be positively associated with apartment 

rents—largely given the specification of the variables (e.g., closer to 1 = better as it illustrates balance).   

 Design measures describe the road and intersection densities: total road network density, network 

density across modalities (walking, transportation, automobiles) and intersection densities per square 

mile.  Both road and intersection densities frame how friendly the urban form is to one or more types of 

users.  Higher road and intersection densities promote walking and are less conducive to automobile use.  

Bond & Devine (2015) find that multi-family buildings earn greater rents in more walking friendly 

locations, thus transportation and pedestrian oriented design metrics are expected to be positively 

associated with apartment rents.    

 Distance or Access to Transportation measures include: distance to nearest transit stop (fixed 

guideway1 only), the proportion of the CBG employment within ¼ and ½ mile buffers of transit stops, 

and the frequency of transit service in a CBG.  Measures of household car ownership are also included.  

Based on results from John & Sirmans (1996), Rauterkus, Thrall, & Hagnen (2010) specific to car 

ownership; and Nelson, Eskic, & Hamidi (2015) as well as a range of multi-family literature noting 

distance to urban amenities (e.g., Jaffe & Bussa 1975; Sirmans, Sirmans, & Benjamin 1989; DesRosiers, 

Theriault, & Menetier 1996; Valente, Wu, Gefand, & Sirmans 2005), proximity to transit metrics should 

be negatively associated with apartment rents.  As specified here using proportionate employment 

proximate to transit, both that association and the association of service frequency with rents is expected 

to be positive (reflecting the same phenomenon though measured differently).     

 Destination Accessibility measures included a range of accessibility indicators derived from a 

series of engineering and structural equation models that draw on transit patterns, trip generation matrices, 

employment, and housing patterns.  Here, metrics describe how easy it is for a CBG to be accessed from 

all other CBGs by walking, transit, and private automobile.  Walkability, for example, is a component of 

destination accessibility.  Based on findings from Pivo & Fisher (2011) on walkability in commercial real 

                                                      
1 “Fixed Guideway” transportation networks typically include heavy rail, light rail, and busways where buses have 
exclusive rights-of-way. These networks enjoy a competitive alternative to private vehicle transport as they are not 
affected by the same congestion that affects road transport infrastructure.  



 11 

estate, Bond & Devine (2015) in apartments, and An & Pivo (2018) across asset classes, apartment 

buildings in more walkable places are expected to command higher rents than others without the 

locational advantage.     

 As parks are an important and occasionally controversial feature of cities for a number of reasons 

(Jacobs 1961), they were included in the analysis data set.  Parks have been considered both amenities 

and dis-amenities over time (Hammer, Coughlin, & Horn 1974; Troy & Grove 2008; Sander & Polasky 

2009).  They provide and create public health, temperature/shade, ecosystem services, and physical 

activity benefits though also raise questions about environmental justice (Wolch, Byrne, & Newell 2014).   

Reflecting that debate, a comprehensive study of park access was conducted by researchers at the CDC in 

2011 (Zhang, Lu, & Holt 2011).  The CDC work quantified access to parks as the linear distance to each 

of the seven closest parks to the centroid of a CBG—ostensibly, the relativity of access.  The measure was 

then population weighted (Zhang, Lu, & Holt 2011).   

 To test the robustness of that metric, a custom non-population weighted parks measure was 

generated from the ESRI USA Parks shapefile.  Polygons describing the boundaries of local, regional, 

state, and national parks were mapped using ArcMap.  Then, using geo-processing tools within ArcMap, 

the Euclidian distances (straight line) to each of four nearest parks was calculated.  Though there is not 

consensus in the literature, the benefits of park access tend to be positively capitalized into home prices.  

Consequently, as these are distance measures, these variables are expected to present a negative 

relationship to apartment rents; buildings with lower distances and greater relative access should see 

greater rents ceteris paribus.   

  Additional variables were added to the Diversity vector, including basic demography metrics 

describing neighborhood poverty, income, mean travel time to work, and education.  The data were drawn 

from the Census’ American Community survey.  Each of these measures was captured at the Census 

Block Group level and extracted from the ACS 5-Year estimate files for 2011-15.  Given the non-random 

geographical distribution of cities in the dataset, a quarter mile distance to coast metric was generated 

using the U.S. Census’ TIGER File Boundary lines from all oceans and Great Lakes.  Using a binary 

approach, if an apartment building was located within this buffer, it was coded as a one and if not a zero.  

The aim of the coastal control variable was to reduce potential correlation with other un-observed effects.   

   

Correlation, Principal Component Analysis, & Variance Inflation Factors 

 The SLD contains numerous variables inherently correlated with each other given their 

measurement of urban development and urban economic phenomena.  For example, macro variables like 

regional access to transit demonstrate high correlation to transit per square mile and transit within a 
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quarter mile variables.  Where these correlations existed one variable was selected to best represent that 

measurement.  

Econometric methods primarily used for the analysis limit the ability to execute Variance 

Inflation Factor (VIF) testing.  Variables for all models were selected using stepwise regressions and the 

examination of correlations both in the matrix and through VIF on comparable ordinary least squares 

(OLS) regressions.  The highest impact variables with no known statistical (not necessarily actual) 

multicollinearity issues were selected into analytical models discussed below.  Each model was checked 

for robustness across fixed and random effects specifications as well as propensity weighted and non-

propensity weighted specifications using the propensity weighting approach of Eichholtz, Kok & Quigley 

(2010).  No building attributes were meaningfully correlated.  As a secondary multicollinearity test, 

ordinary least squares dummy variable regressions (OLSDV) replicated all models; all VIF results were 

below 10, excepting the intrinsically correlated natural log of building age and its squared term. 

 

Econometric Approaches 

 Obvious differences between markets such as New York and Cincinnati require market level 

controls.  This is especially true in the multi-family market (Wolverton, Hardin, & Cheng 2005).  

However, the heterogeneity within each geographic market suggests random effects as they control for 

market level differences but permit within market variation (Bell and Jones, 2016; Robinson et al., 2018; 

Seiler and Walden, 2014; Wooldridge, 2012).  

 

Equation 2: 

   !"#$%&!'�(� =  )*(� + )+(� ",� +  )-(�  .//,+� +  )0(�.//,-� +  )1(�.//,0� +  )2(�.//,1� +  )3(�.//,2� + 4�(�     

 

Where ",� is a vector of apartment complex characteristics such as size and composition for complex i.  

.//,+� through  .//,2� are the vectors of Density, Design, Destination Accessibility, Distance to Transit and 

Diversity.  Random effects control for market j and time t; unobserved between and within effects are 

captured in 4�(�.  Model 1 served as the base model.  It included only apartment complex attributes, ",. 

Models 2-6 add the base model attributes and then each of the variables under one of the five sustainable 

urban form clusters, .//,+52 (e.g., all factors remaining to describe design).  Model 7 included all variables 

(Table 4 & 5).   

 

Replication of Prior Work 



 13 

 Before exploring the demand for various attributes of sustainable urban form, the team sought to 

reproduce a reasonable facsimile of prior findings that touched on sustainability in both building and 

locational form.  To do so, Equation 1 was specified taking guidance from prior studies (Pivo & Fisher 

2011 and Bond & Devine 2015) that examined the relationships between walkability, green buildings, 

and commercial real estate rents in both office and multi-family respectively.  Though the 

Apartments.com dataset did not have the gross lease variable and the EPA’s Walkability index was used 

in place of WalkScore, model coefficients were directionally and qualitatively similar to those in both 

studies.  Here, apartment buildings with higher walkability and with green certifications command higher 

rents.  Although not the focus of this study, replicated models of Bond & Devine (2015), including green 

eco-labels of LEED yielded comparable rental premiums.  That our much larger sample supports their 

work helps validate both studies.  

 Additionally, drawing on the Smart Location and Neighborhood Pattern sections (the land 

development) as well as the Green Building sections (vertical development) of LEED for Neighborhood 

Development, Equation 1 was specified to reflect the required elements using analogous variables to the 

extent possible.  When both green building and sustainable urban form metrics were included in this 

model, they each revealed significant coefficients with directionally expected signs (e.g., positive 

significant for green buildings).  To be clear, these results neither directly confirm nor refute those of 

Freybote, Sun & Yang (2015) as the precise scores and attributes of the LEED ND neighborhood in 

which they conducted their analysis are not fully replicable using the analysis dataset here.  However, 

from a qualitative standpoint, that the green building signs were significant alongside sustainable urban 

form provides a complementary finding suggesting greater justification for exploring sustainable urban 

form and developing insight into demand for it revealed by the market for multi-family housing.   

 

Insert Table 3 (Bond & Devine Replication Results about here) 

 

 Broadly, the replication results are important for two reasons.  First, they provide additional 

evidence that market participants demand and are willing to pay marginally greater prices for attributes of 

sustainable urban form, holding all other factors constant—including eco-certifications.  Second, they 

provide larger sample ballast (via both N of buildings and geographies) that sustainability of location is 

also associated with multi-family rents.  In the context of observations by Ewing & Cervero (2010) about 

the elements of sustainable urban form and Bajari et al (2012) on the potential for correlations with un-

observed factors, it stands to reason that if walkability, an attribute of sustainable urban form, is a 

significant predictor of rents in a hedonic model, there might be other factors related to building location 

that could also be associated with rents. Consequently, in the broad context of growing urban populations 
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and the ability of cities to both contribute to and attenuate anthropogenic pollution, exploring demand for 

attributes of sustainable urban form appear both empirically warranted and important.   

 

IV. Results & Discussion 

General Discussion 

 Based on the literature noted above, urban form and sustainability have been research foci for 

some time.  This paper contributes newly to the conversation about growing and changing cities by 

intersecting the two concepts and using the real estate market as a vehicle for analysis.  As a result, many 

of the findings relate conceptually to previous studies while also providing new insights about the 

nuanced demand for sustainable urban form as revealed by multi-family renters.   

 Consistent across the model specifications, the majority of the sustainable urban form attributes 

were significant predictors of variation in multi-family rents.  Substantively, density, design, diversity, 

distance to transit, and destination accessibility each revealed signals about the desirability of sustainable 

urban form. Individual indicators generally align conceptually with findings from Geyer (2017) in that 

they illustrate ways that consumers satisfice when making the complex and concurrent decision about 

which apartment to rent in which neighborhood (Table 4).  The prioritizing of accessibility is evident.   

 Include Table 4 about here 

            For example, walkability has largely been viewed as a highly desirable urban attribute.  Indeed, in 

the models including only building attributes and destination access metrics—of which walkability is one, 

the walkability index presents as positive and significant.  Likewise, when only design variables are 

present in the model, the presence of pedestrian-oriented design infrastructure (“links") presents as 

positive and significant. However, when all sustainable urban form factors are included in the full model 

(model 7), walkability fails to present significantly while the pedestrian-oriented infrastructure variable is 

marginally negative.   

 This finding suggests that walkability, when considered alone, is desirable but when more direct 

measures of urban design, such as the reported travel to work behavior of residents or accessibility across 

multiple modalities from all other places in the city is considered, walkability as an intangible concept 

may not be as desirable to multi-family renters.  This finding in no way suggests that walkability is un-

important to urban consumers.  However, the result illustrates the complexity of pedestrian oriented 

design in urban places and points out the importance of measuring it across multiple metrics.  More 

simply, perhaps the models reveal that the option of walking to work supersedes inclinations toward a 

generic “walkable” neighborhood in the order of consumer preferences; with the priority of access to 

work via walking trumping the walkability to other non-work places.   In addition, Model 7 
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communicates that the provision of additional pedestrian infrastructure has no effect on apartment 

demand unless it has a measurable effect on resident behavior.    

            Broadly, these results are congruent with expectations informed by prior theory and evidence, 

though the findings suggest some important nuances and new considerations in addition to the walkability 

discussion above. With respect to density measured by employment densities across industrial clusters, 

multi-family buildings in employment dense neighborhoods commanded greater rents than those whose 

employment densities were oriented towards retail or government jobs.  Consistent with expectations 

based on Glaeser & Kahn (2004) about the innovation and economic benefits of proximity in urban 

places, multi-family renters prefer greater residential and commercial densities.  Given that these densities 

represent concentrations of individuals and firms, this preference for greater urban density is a key finding 

for both institutional investors and urban policy makers.  Critically, where crowding and other 

negativedensity related externalities are not included in the models given subjectivity in measurement, we 

cannot comment about potential limits to the demand for density.   

Importantly, these models do not contain a specific metric describing proximity to the ‘central 

business district’ (CBD). A CBD metric often acts as a proxy for the very measures studied in this 

analysis.  Instead, these results suggest that a finer grained approach to measuring where economic 

activity (job density), destination accessibility and related measures may better articulate consumer 

preferences for urban form and location.  As examples, a number of variables correlated to a CBD 

measured independently such as walkability, pedestrian links, and transit variables all reduce in economic 

and/or statistical impact when measured in concert, more jointly representing a CBD.     This, along with 

other findings, suggests that CBD – or more precisely, access to the most desirable land in a city – may be 

well controlled by this data set.  This differs substantively from prior urban economic literature where 

distance has been a primary indicator.   

Model Results & Discussion 

 For the discussion below, the results described are based on non-propensity weighted random 

effects GMM models (Table 4) with Census Block Group level measurements for non-building related 

vectors.    

 The control variables all meet traditional expectations as well as being consistent in sign and 

magnitude. Higher building quality as measured by the CoStar rating is positively associated with rents, 

resulting in an approximately 10-15% increase in rent per square foot per additional rating point. 

Likewise, high rise apartments attract a premium while garden level apartments attract a discount relative 

to mid-rise buildings. The configuration percentages map a market with diminishing returns to apartment 

size, with rents per square foot highest in buildings with a high percentage of small studio apartments and 
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lowest in buildings with a high percentage of 3-bedroom (or greater) configurations (the omitted 

benchmark category). Recently renovated apartments rent for approximately 3% more per square foot, all 

else equal. Rental rates decline as buildings age. More buildings in the same complex have a small, 

positive, effect on rent. Finally, buildings within a quarter mile of the coast rent for 3-5% more per square 

foot. 

 Of all the controls, building height is most affected by measures of urban form because classical 

bid-rent theory would suggest high rise apartments are only built in the most desirable parts of the city, 

thus in the absence of urban form metrics (or a CBD measure), building height instruments for location. 

Illustrating this, when urban form is measured in full (Model 7), the premiums for high rise apartments 

and discounts for garden level apartments both fall.  

 With respect to density, residential density was positively associated with rents as were 

commercial densities as measured by employment in a range of industrial classifications including office, 

industrial, service, and entertainment.  Healthcare and public employment densities each presented 

negatively across specifications; healthcare could be due to negative externalities such as ambulance 

noise.  Broadly, that each density measure was a significant predictor of variation in rents is consistent 

with work from Glaeser & Kahn (2004) and others that emphasized the importance of proximity between 

individuals and firms —the closer the better for facilitating innovation, opportunity, and activity.  

Additionally, greater density is associated with reduced congestion and as a result helps reduce 

greenhouse gas emissions (Wheaton 1998; Cervero & Duncan 2006).  The results are also consistent with 

expectations developed from Kelly & Malizia (2017) who articulate the importance of vibrancy within 

cities.  The density results illustrate the preference of renters for being proximate to areas of private 

economic activity or vibrancy.    

 Design measures offer the first clear instance of nuance through satisficing around sustainable 

urban form and location in the housing decision.  Across all model specifications, access to parks was 

positively associated with multi-family rents; the negative coefficient reflects the further away from parks 

the lower the rent.  For large urban apartment buildings, proximity to greenspace is a natural complement 

and is consistent with the income and education control variable results—echoing potential distributive 

justice warnings from the prior literature (Zhang, Lu, & Holt 2011.)  Beyond parks, the urban design 

findings provide an illustration of the satisficing or tradeoffs made in the concurrent housing-

neighborhood search.  Pedestrian and multi-modal oriented design measures were each significant 

predictors of rents in models that included solely building attributes and density measures.  However, in 

the full model including all other urban form metrics, these measures either changed signs or became 

statistically insignificant.  These results suggest that, while consumers find value in these pedestrian 
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oriented design factors, they may prioritize other factors such as proximity to employment and vibrancy 

over physical urban form attributes.  

  The design trade-offs are further contextualized by the findings relative to destination 

accessibility.  Broadly, the more accessible a building was from other parts of the city, the greater the 

rents.  This held across walking, biking, and automobile modalities.  Importantly, accessibility was also 

prioritized relative to employment.  As the percentage of residents who traveled fewer than 10 minutes to 

work increased, so did rents.  These findings held across model specifications and into the full model 

where all factors were included.  The exception to the story within this cluster is walkability.  Within the 

model where only building attributes and destination accessibility metrics were included, walkability was 

both a positive and significant predictor of rents.  However, is not a significant predictor at any level in 

the full model.  While on the surface it may seem the full model (Model 7) finding is inconsistent with 

Bond & Devine (2015) in multi-family and Pivo & Fisher (2011) in office, who both found improved 

competitive advantage in more walkable areas, holistic analysis suggests – as described above – that 

renters value space where pedestrian infrastructure is used, not always where it is present. Overall, with 

the exception of park proximity, design variables have very little effect on rent in the wider context of 

urban form as coefficient parameters are very low. 

 Destination variables from the ACS measure existing resident transport choices; all else equal, as 

the share of residents walking or cycling to work increases, so do apartment rents. Again, it appears likely 

that observed use of cycling and walking infrastructure serves as a better indicator of urban location 

preferences when compared with the design variable solely measuring the provision of infrastructure. 

While automobile accessibility (Destination_CBG_RegAccess_Auto) acts as a positive amenity, 

increasing rents, its effect is mitigated by the much stronger negative effect for the relative measure of 

automobile accessibility (Destination_CBG_RegCntrlty_Auto).  This means that automobile access is 

good but the exclusivity of automobile access, presumably at the cost of transport choice, is a dis-

amenity. Rather than contradict earlier findings this reveals nuance to multi-family consumers’ 

preferences.  Other destination variables behave as expected. In the classic urban economic trade-off, 

longer commutes are associated with lower rents. Likewise, as the number of jobs accessible to the 

apartment increases, which occurs when one resides close to an economic activity hub, so do rents. 

 Distance to transit offers further evidence of satisficing.  In the models where building attributes 

and distance to transit measures are the only vectors, being with ¼ mile of a transit stop was not a 

significant predictor of rents though being within a ½ mile was positively and significantly associated.  

This complex finding is broadly consistent with recent work by Nelson, Eskic, & Hamidi (2015) who 

found quadratic function relationships between office rents and distance to transit stops.  In the full 

model, the ¼ mile variable turned negative though still insignificant and the ½ mile presented as 
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insignificant.  Complementing these findings, greater transit frequency near an apartment building, was 

positively associated with variation in rents.  That frequency was positive and significant in all model 

specifications suggests that proximity to transit alone may not be as important as proximity with better 

service.  This follows the narrative that consumers demonstrate their preference for accessible places with 

high use; transit services are only frequent when in high demand, else operators would scale back 

service. Again, provision of infrastructure (proximity to a stop) is not as important as its observed use 

(measured by frequency of service). Being able to move efficiently to locations across the city, 

particularly by observing existing modal choices, seems important to urban renters.   

 Measures of spatial diversity indicated a relatively consistent story that was congruent with 

expectations.  The metrics described complex phenomena such as trip and employment equilibrium and 

entropy; these metrics assess the extent to which places offer greater jobs-housing balances and activities 

and how those balances relate to trip generation across modalities.  The negative signs for both trip and 

employment equilibrium were expected given prior literature describing the relationship between jobs-

housing balance and reduced vehicle miles traveled (e.g., Cervero & Ewing 2010).  The signal from these 

metrics is supported by the positive employment entropy (employment mixture) finding and the 

employment density findings noted above.  Here, it seems there is demand for more diverse activities in 

the local areas where consumers would live and a preference for co-location of jobs and housing.   

 Other diversity measures such as the level of education also presented consistent with 

expectations as higher levels of education were associated with higher rents.  The percentage of low wage 

workers in a CBG means less ability to pay for housing services, leading to lower rents.  Interestingly, the 

percentage of owner occupied homes when only measured with diversity measures appears as 

significantly negative.  Presumably, a high percentage of owner occupied homes is found in larger 

suburban CBGs, thus in the absence of other measure of urban form, acts as a suburban/urban instrument.  

However, in the full model, where measures such as commuting distance and automobile accessibility 

better describe the shared costs and benefits of suburban living choices, the expected effect of owner-

occupancy to identify the relative quality of neighborhoods appears and it becomes significantly positive.  

  

V. Conclusions, Limitations, and Implications 

 As cities grow and absorb new residents, they offer both contribution to and attenuation of 

anthropogenic pollution.  In this context and given the growing importance of multi-family housing as a 

vector through which to explore urban phenomena, a large database describing U.S. multi-family 

buildings and their spatial contexts was analyzed to develop insight into the demand patterns for these 

sustainability attributes.  Before engaging in the exploration of the new, this paper replicated and 

generally reproduced, to the extent possible, findings from prior research using newer and broader 
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datasets.  The results from Bond & Devine (2015) held and helped to provide a useful framework for 

extension and further exploration.  Beyond the results of Bond & Devine, in the concurrent spatial search 

for both an apartment and a neighborhood, our regression models indicate that consumers are willing to 

pay for buildings in denser areas, with higher frequencies of transit service, with existing use of varied 

transit modalities, and locations with greater relative accessibility from all other points in the city.  

Demand for more sustainable locations is evident and robust to multiple specifications.   

 The results also shed some light onto the nuanced and complex decision parameters associated 

with renting an apartment in an urban area.  These findings have substantial implications for institutional 

investors—especially moving forward in a potentially fee and yield constrained economic cycle.  The 

results suggest buying or developing well-located buildings can create economic advantages.  Buying 

buildings near or in the midst of where economic activity is occurring could help capture higher rents.  

Future analyses could examine investors’ abilities to create and capture value based on these attributes, 

strategically identifying locations where urban form attributes are not fully capitalized into prices.  

Similarly, locating transit stops with high service frequency offers advantages but results suggest 

potentially greater investor impact by assessing the quality and frequency of service as well as 

accessibility of the building from other points in the city.  Critically, the results reveal how apartment 

consumers satisfice when confronted with multiple sustainable urban form attributes. For example, a 

generic measure of “walkability” can provide a useful proxy for where renters want to live.  However, it 

seems that accessibility and proximity to economic activity better describe demand when existing mode 

choices are observed.  

 For urban policy, this study provides the insightful conclusion that infrastructure projects or 

regulations designed to improve urban sustainability may not alter urban use patterns alone.  Frequency of 

use and optimally located infrastructure near employment density will have a greater impact, so planners 

must carefully consider the effect of infrastructure on use and access. The set of design variables that 

solely measures the provision of infrastructure were largely insignificant drivers of rents or had a very 

minor effect on rents. As mentioned above, private investors, developers, and tenants will rationally 

examine existing accessibility and use patterns as better determinants of demand, so incentives – such as 

reduced development levies or access to finance – may be needed to entice private partners into 

developing identified urban growth nodes that do not have existing patterns of high use or accessibility.  

 Though the paper worked to address the problems of hedonic models identified by Bajari et al 

(2012) by including both spatial and building characteristics, the results have natural limitations.  First, 

the models are each specified using CBG level spatial metrics (both alone and aggregated to the CT 

level).  In any event, the lesson from Bajari et al (2012) is well taken; that is, the economist cannot 

observe all factors that consumers can.  Changing geographic focus levels permits new insight given the 



 20 

spatial nature of markets and rental decisions.  Similarly, there is a second hypothesis that is difficult to 

disprove.  This study’s disaggregated attempt at measuring urban form may simply distribute a latent, less 

complex, urban location decision determinant, such as a simple proximity to the CBD variable or the size 

of a city, into urban form variables that best proxy these latent variables. However, the large sample size 

in this study helps overcome the inefficiency of estimating parameters to correlated exogenous variables, 

meaning that the variable in which this latent determinant arises is likely to be a better measure for 

investors to use when strategically deciding on short- to medium-term location decisions for their capital.  
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Exhibits:



 
Table 1 
Descriptive Statistics.  This table shows descriptive statistics for the 2016-2017 national apartment complex sample.  The N represents average unique building 
complexes per year with 93% of the sample including both year observations. Garden level is 3 stories and under while Highrise is 9 stories and greater.  Studio, 1 
Bed, 2 Bed and 3 Plus Bed are percentage of that unit type in the mean complex.  Age is as of 2017 

Market N AvgRent 

PSF 

Garden 

Level 

High-

rise 

Costar 

Apt 

Rating 

Studio 1 

Bed 

2 

Bed 

3 

Plus 

Bed 

# of 

Buildings 

Studio 

Size 

1 

Bed 

Size 

2 Bed 

Size 

3 

Plus 

Bed 

Size 

Age 

National 51,147 1.44 75% 7% 4.0 6% 40% 44% 9% 11 114 609 882 561 38 

Atlanta 1,935 0.95 85% 2% 3.9 1% 33% 52% 14% 16 50 666 1,058 899 32 

Austin 829 1.32 91% 2% 3.9 4% 48% 40% 8% 14 80 649 968 612 26 

Baltimore 752 1.34 72% 8% 3.9 4% 36% 49% 11% 14 103 658 925 666 42 

Boston 1,194 2.02 51% 11% 4.1 7% 40% 46% 8% 7 159 637 890 494 46 

Charlotte 743 0.95 91% 1% 3.9 2% 33% 50% 15% 15 62 613 974 848 27 

Chicago 1,683 1.48 51% 19% 4.1 17% 42% 34% 7% 6 200 610 749 421 52 

Cincinnati/Dayton 855 0.86 89% 3% 4.0 3% 34% 52% 12% 12 66 538 859 574 39 

Cleveland 876 0.92 72% 8% 4.0 3% 39% 50% 8% 9 81 573 871 430 45 

Columbus 790 0.90 94% 1% 3.9 3% 31% 58% 9% 18 54 512 941 453 32 

Dallas/Ft Worth 2,922 1.10 92% 1% 3.9 3% 47% 42% 8% 16 72 662 975 636 32 

Denver 1,099 1.46 71% 7% 4.0 5% 45% 43% 7% 10 121 643 913 544 31 

Detroit 1,214 0.96 87% 5% 4.0 2% 41% 49% 7% 13 66 639 901 401 42 

East Bay/Oakland 713 2.32 84% 1% 4.2 5% 42% 45% 8% 9 119 595 857 449 39 

Hampton Roads 594 1.03 89% 2% 3.8 2% 25% 59% 14% 16 39 557 943 797 36 

Hartford 463 1.28 78% 3% 4.1 7% 41% 45% 7% 10 122 601 832 427 52 

Houston 2,407 1.07 91% 1% 3.8 2% 47% 42% 9% 16 57 672 995 702 31 

Indianapolis 668 0.86 91% 2% 3.9 4% 36% 49% 12% 17 86 650 946 742 35 

Inland Empire (California) 847 1.29 100% 0% 4.2 2% 29% 56% 13% 15 53 525 894 528 30 

Kansas City 848 0.90 86% 5% 3.9 5% 39% 45% 11% 14 105 616 898 608 40 

Las Vegas 722 0.96 95% 2% 4.0 5% 33% 50% 12% 20 55 607 929 730 27 

Long Island (New York) 1,295 2.12 16% 11% 4.0 18% 48% 27% 7% 3 235 530 603 276 60 

Los Angeles 2,728 2.09 74% 3% 4.2 15% 43% 36% 6% 5 210 606 800 370 43 

Milwaukee/Madison 700 1.14 76% 6% 4.1 7% 38% 47% 8% 7 147 605 922 416 34 

Minneapolis/St Paul 1,215 1.20 77% 4% 4.0 6% 43% 43% 8% 4 180 677 925 579 38 

Nashville 629 1.03 91% 2% 3.9 2% 34% 51% 13% 14 50 603 959 766 29 

New York City 1,372 4.02 0% 59% 4.2 21% 47% 23% 9% 1 243 458 542 414 66 

Northern New Jersey 1,294 1.78 68% 10% 4.2 5% 50% 39% 6% 9 117 680 909 377 40 

Orange County (California) 929 1.93 93% 0% 4.1 4% 40% 50% 6% 14 93 605 940 385 39 

Orlando 837 1.05 93% 1% 4.0 2% 34% 48% 16% 18 54 613 971 846 27 
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Philadelphia 1,975 1.27 77% 7% 4.0 5% 41% 45% 9% 11 107 626 884 516 46 

Phoenix 1,386 1.05 95% 1% 4.1 6% 38% 48% 8% 16 115 609 894 531 30 

Pittsburgh 323 1.14 63% 14% 4.1 5% 42% 42% 11% 9 119 600 856 577 43 

Portland 1,251 1.33 83% 3% 4.1 7% 31% 52% 10% 11 102 547 866 584 31 

Raleigh/Durham 607 1.01 90% 1% 3.9 2% 36% 50% 13% 15 48 630 996 840 27 

Sacramento 821 1.29 98% 0% 4.0 2% 36% 52% 10% 14 69 588 882 506 35 

Salt Lake City 419 1.08 81% 1% 4.0 3% 31% 49% 17% 10 63 518 886 671 27 

San Antonio 806 1.04 95% 1% 3.8 4% 46% 41% 10% 16 86 646 947 697 30 

San Diego 1,064 1.76 91% 1% 4.2 4% 35% 50% 11% 11 82 547 872 480 34 

San Francisco 420 3.52 38% 15% 4.1 22% 41% 28% 9% 5 251 584 689 428 47 

Seattle/Puget Sound 1,631 1.74 65% 5% 4.1 10% 41% 41% 8% 9 172 621 855 477 32 

South Bay/San Jose 616 2.67 83% 1% 4.1 8% 41% 42% 9% 10 137 629 898 569 35 

South Florida 1,430 1.37 68% 14% 4.1 3% 37% 45% 14% 10 73 580 860 670 30 

St. Louis 579 0.95 80% 8% 4.0 4% 37% 50% 9% 13 63 586 894 506 46 

Tampa/St Petersburg 982 1.06 92% 2% 4.2 3% 38% 47% 12% 16 58 629 944 708 30 

Washington, DC 2,047 1.86 51% 17% 3.8 8% 40% 42% 10% 10 185 657 911 650 41 

West Michigan 505 0.90 93% 1% 4.0 2% 35% 52% 12% 12 61 607 915 548 36 

Westchester/So 

Connecticut 
1,144 1.42 21% 12% 4.0 13% 49% 29% 9% 3 162 500 570 338 61 

 
 



Table 2 
This table identifies the source and brief definition of the five “D,” Density, Design, Destination Accessibility, Distance to 
Transit and Diversity, variables used in this analysis.  
 

Variable Source Definition 

Density_CBG_Residential EPA SLD Gross residential density (HU/acre) on unprotected land 

Density_Emp_Retail_8 EPA SLD Gross retail (8‐tier) employment density (jobs/acre) on unprotected land 

Density_Emp_Office_8 EPA SLD Gross office (8‐tier) employment density (jobs/acre) on unprotected land 

Density_Emp_Ind_8 EPA SLD Gross industrial (8‐tier) employment density (jobs/acre) on unprotected land 

Density_Emp_Service_8 EPA SLD Gross service (8‐tier) employment density (jobs/acre) on unprotected land 

Density_Emp_Ent_8 EPA SLD Gross entertainment (8‐tier) employment density (jobs/acre) on unprotected 

land 

Density_Emp_Edu_8 EPA SLD Gross education(8‐tier) employment density (jobs/acre) on unprotected land 

Density_Emp_Health_8 EPA SLD Gross health care (8‐tier) employment density (jobs/acre) on unprotected 

land 

Density_Emp_Public_8 EPA SLD Gross pu8blic  (8‐tier) employment density (jobs/acre) on unprotected land 

Design_CBG_AutoLink EPA SLD Network density in terms of facility miles of auto‐oriented links per square 

mile 

Design_CBG_MultiLinks EPA SLD Network density in terms of facility miles of multi‐modal links per square mile 

Design_CBG_PedestrianLink EPA SLD Network density in terms of facility miles of pedestrian‐oriented links per 

square mile 

Design_CBG_IntersectionWeighted EPA SLD Street intersection density (weighted, auto‐oriented intersections eliminated) 

Design_CBG_AutoInstersection_PSM EPA SLD Intersection density in terms of auto‐oriented intersections per square mile 

Design_CBG_Multi3Leg_PSM EPA SLD Intersection density in terms of multi‐modal intersections having three legs 

per square mile 

Design_CBG_Multi4Leg_PSM EPA SLD Intersection density in terms of multi‐modal intersections having four or 

more legs per square mile 

Design_CBG_Ped3Leg_PSM EPA SLD Intersection density in terms of pedestrian‐oriented intersections having 

three legs per square mile 

Design_CBG_Ped4Leg_PSM EPA SLD Intersection density in terms of pedestrian‐oriented intersections having four 

or more legs per square mile 

Design_CBG_Park GIS Euclidean distance to nearest park polygon edge, derived using Near tool in 

ArcGIS 

Design_Apartment_ParkAccess CDC *apartment data only. CDC‐based park accessibility score. Processed with 

Spatial Join function in ArcGIS. 

Destination_Emp_Bike ACS Census MEANS OF TRANSPORTATION TO WORK: Bicycle: Workers 16 years and over 

‐‐ (Estimate) 

Destination_Emp_Walk ACS Census MEANS OF TRANSPORTATION TO WORK: Walked: Workers 16 years and over 

‐‐ (Estimate) 

oDestination_CBG_Auto_Jobs45Min EPA SLD Jobs within 45 minutes auto travel time, timedecay (network travel time) 

weighted 

Destination_CBG_RegAccess_Auto EPA SLD Proportional Accessibility to Regional Destinations ‐ Auto: Working age 

population accessibility expressed as a ratio of total CBSA accessibility 

Destination_CBG_RegCntrlty_Auto EPA SLD Regional Centrality Index – Auto: CBG D5ce score relative to max CBSA D5ce 

score 

Destination_CBG_Walkability EPA  Index from National Walkability data 

Destination_Emp_45Minsplus ACS Census Derived from US Census Bureau's ACS data for all commute trips 45 minutes 

or longer in temporal duration 
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Destination_Emp_30_45Mins ACS Census Derived from US Census Bureau's ACS  data for all commute trips of temporal 

duration between 30 and 45 minutes 

Destination_Emp_10_30Mins ACS Census Derived from US Census Bureau's ACS data for all commute trips between 10 

and 30 minutes in temporal duration 

Destination_Emp_10Mins ACS Census Derived from US Census Bureau's ACS data for all commute trips up to 10 

minutes in temporal duration 

Distance_Emp_Trnst_QtrMile EPA SLD Proportion of CBG employment within ¼ mile of fixed‐guideway transit stop 

Distance_Emp_Trnst_HalfMile EPA SLD Proportion of CBG employment within ½ mile of fixed‐guideway transit stop 

Distance_CBG_TrnstFreq_PSM EPA SLD Aggregate frequency of transit service (D4c) per square mile 

Diversity_CBG_Edu_College_Some ACS Census EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER: 

Some college, 1 or more years, no degree: Population 25 years and over ‐‐ 

(Estimate) 

Diversity_CBG_Edu_College_Trade ACS Census EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER: 

Professional school degree: Population 25 years and over ‐‐ (Estimate) 

Diversity_CBG_Edu_Bach_Assoc ACS Census Derived from US Census Bureau's ACS data for bachelor's and associates 

degrees received. 

Diversity_CBG_Edu_Graduate ACS Census Derived from US Census Bureau's ACS data for graduate degrees received. 

Diversity_CBG_Pop_Mean_Income ACS Census HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2015 INFLATION‐

ADJUSTED DOLLARS): Total: Households ‐‐ (Estimate) 

Diversity_CBG_Owner_Occupied ACS Census TENURE: Owner occupied: Occupied housing units ‐‐ (Estimate) 

Diversity_CBG_PercentLowWage EPA SLD % LowWageWk of total #workers in a CBG (home location), 2010 

Diversity_Emp_JobsPerHousehold EPA SLD Jobs per household 

Diversity_Emp_Entropy_8 EPA SLD 8‐tier employment entropy (denominator set to observed employment types 

in the CBG) 

Diversity_CBG_TripEquilibrium EPA SLD Trip productions and trip attractions equilibrium index; the closer to one, the 

more balanced the trip making 

Diversity_Region_Emp_Diversity EPA SLD Regional Diversity. Standard calculation based on population and total 

employment: Deviation of CBG ratio of jobs/pop from regional average ratio 

of jobs/pop 

Diversity_Region_Emp_WkrsPerJob EPA SLD Household Workers per Job, as compared to the region: Deviation of CBG 

ratio of household workers/job from regional average ratio of household 

workers/job 

Diversity_Emp_WorkersPerJob EPA SLD Household Workers per Job, by CBG 

Diversity_Emp_Equilibrium EPA SLD Household Workers per Job Equilibrium Index; the closer to one the more 

balanced the resident workers and jobs in the CBG. 
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Table 3:  
Hedonic Regression Estimates of Observed ln(AvgRent/SF). This fixed effect multivariate regression has a dependent 
variable of the natural log of average rent per square foot for the apartment complex sample (see Equation 1).  See Table 2 
for definitions of other variables.  The model is an OLS fixed effect regression with year and market as fixed effects 
intercept. The model replicates Bond and Devine (2015).   ***, ** and * indicate significance at 99%. 95% and 90% 
levels, respectively. Standard errors are clustered at market level. 
 
Variable Model 1 

Intercept ‐0.338*** 

LEED 0.089*** 

Destination_CBG_Walkability 0.088*** 

garden_level ‐0.121*** 

highrise 0.147*** 

percentstudio 0.697*** 

percent1bed 0.480*** 

percent2bed 0.257*** 

Renovated 0.038*** 

Ln_age ‐0.141*** 

Ln_age_Squared 0.018*** 

Gym 0.115*** 

Pool 0.043*** 

Private_Outdoor_Space 0.016*** 

R‐Squared 0.731 

Model N 98,362 

Time Fixed Effects yes 

Market Fixed Effects yes 
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Table 4:  
Hedonic Regression Estimates of Observed ln(AvgRent/SF). Each multivariate regression has a dependent variable of the 
natural log of average rent per square foot for the apartment complex sample (see Equation 1).  See Table 2 for definitions 
of other variables.  Each model is a GMM mixed effect regression with year and market as random effects on the 
intercept. Model (1) shows baseline results with only building level controls. Models (2-6) incorporate one vector of 
Density, Design, Destination Accessibility, Distance to Transit and Diversity respectively. Model 7 includes all five “D” 
vectors. ***, ** and * indicate significance at 99%. 95% and 90% levels, respectively. Standard errors are clustered at 
market level. 
 

Variable Model1 Model2 Model3 Model4 Model5 Model6 Model7 

Intercept ‐0.2848 ‐0.6275** ‐0.2668 ‐1.8646** ‐0.3661* ‐0.0228 ‐1.1940** 

garden_level ‐0.1255*** ‐0.0730*** ‐0.0987*** ‐0.0643*** ‐0.0908*** ‐0.0907*** ‐0.0339*** 

Highrise 0.1602*** 0.1166*** 0.1459*** 0.1249*** 0.1439*** 0.1274*** 0.0950*** 

Apartment_Building_Rating 0.1343*** 0.1260*** 0.1328*** 0.1203*** 0.1328*** 0.1056*** 0.0988*** 

Percentstudio 0.5907*** 0.5359*** 0.5780*** 0.5383*** 0.5742*** 0.5425*** 0.5012*** 

percent1bed 0.4089*** 0.3750*** 0.4001*** 0.3758*** 0.4040*** 0.3735*** 0.3492*** 

percent2bed 0.1906*** 0.1824*** 0.1936*** 0.1907*** 0.2007*** 0.1709*** 0.1746*** 

Ren10 0.0253*** 0.0267*** 0.0251*** 0.0252*** 0.0249*** 0.0310*** 0.0318*** 

Lnage ‐0.1371*** ‐0.1356*** ‐0.1245*** ‐0.1152*** ‐0.1229*** ‐0.1364*** ‐0.1154*** 

lnage2 0.0226*** 0.0195*** 0.0183*** 0.0158*** 0.0184*** 0.0232*** 0.0157*** 

Number_of_Buildings 0.0003*** 0.0004*** 0.0003*** 0.0004*** 0.0005*** 0.0003*** 0.0005*** 

Coast_QtrMile 0.0481*** 0.0370*** 0.0463*** 0.0915*** 0.0530*** 0.0380*** 0.0488*** 

Density_CBG_Residential  0.0341***     0.0157*** 

Density_Emp_Retail_8  ‐0.0046***     ‐0.0002 

Density_Emp_Office_8  0.0054***     0.0027*** 

Density_Emp_Ind_8  0.0044***     0.0023*** 

Density_Emp_Service_8  0.0102***     0.0017*** 

Density_Emp_Ent_8  0.0060***     0.0048*** 

Density_Emp_Edu_8  0.0022***     0.0010*** 

Density_Emp_Health_8  ‐0.0023***     ‐0.0011*** 

Density_Emp_Public_8  ‐0.0070***     ‐0.0084*** 

Design_CBG_AutoLink   0.0008**    0.0003 

Design_CBG_MultiLinks   0.0010*    0.0000 

Design_CBG_PedestrianLink   0.0329***    ‐0.0033* 

Design_CBG_IntersectionWeighted   0.0002    0.0010 

Design_CBG_AutoInstersection_PSM   0.0005    ‐0.0007** 

Design_CBG_Multi3Leg_PSM   ‐0.0008***    ‐0.0002 

Design_CBG_Multi4Leg_PSM   0.0002    ‐0.0008*** 

Design_CBG_Ped3Leg_PSM   ‐0.0026***    ‐0.0002 

Design_CBG_Ped4Leg_PSM   ‐0.0011***    ‐0.0004 

Design_CBG_Park   ‐0.0001    ‐0.0008*** 

Design_Apartment_ParkAccess   ‐0.0424***    ‐0.0077*** 

Destination_Emp_Bike    0.0168***   0.0119*** 

Destination_Emp_Walk    0.0065***   0.0058*** 

Destination_CBG_Auto_Jobs45Min    0.1350***   0.0986*** 

Destination_CBG_RegAccess_Auto    0.0433***   0.0325*** 

Destination_CBG_RegCntrlty_Auto    ‐0.1596***   ‐0.1380*** 

Destination_CBG_Walkability    0.0180***   0.0016 
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Destination_Emp_45Minsplus    ‐0.0151***   ‐0.0112*** 

Destination_Emp_30_45Mins    ‐0.0077***   ‐0.0112*** 

Destination_Emp_10_30Mins    0.0195***   ‐0.0068*** 

Destination_Emp_10Mins    0.0080***   0.0027*** 

Distance_Emp_Trnst_QtrMile     0.0003  ‐0.0002 

Distance_Emp_Trnst_HalfMile     0.0058***  0.0004 

Distance_CBG_TrnstFreq_PSM     0.0067***  0.0012*** 

Diversity_CBG_Edu_College_Some      ‐0.0481*** ‐0.0352*** 

Diversity_CBG_Edu_College_Trade      0.0166*** 0.0121*** 

Diversity_CBG_Edu_Bach_Assoc      0.0159*** 0.0189*** 

Diversity_CBG_Edu_Graduate      0.0200*** 0.0169*** 

Diversity_CBG_Owner_Occupied      ‐0.0081*** 0.0047*** 

Diversity_CBG_PercentLowWage      ‐0.3883*** ‐0.3302*** 

Diversity_Emp_JobsPerHousehold      0.0000 0.0000 

Diversity_Emp_Entropy_8      0.0081** ‐0.0038 

Diversity_CBG_TripEquilibrium      0.0013 ‐0.0079** 

Diversity_Region_Emp_Diversity      0.0355*** ‐0.0031 

Diversity_Region_Emp_WkrsPerJob      ‐0.0139** ‐0.0116* 

Diversity_Emp_WorkersPerJob      0.0001*** 0.0001*** 

Diversity_Emp_Equilibrium      ‐0.0018 ‐0.0026 

AIC ‐7,471 ‐12,406 ‐10,110 ‐17,307 ‐9,836 ‐16,545 ‐24,500 

SIC ‐7,477 ‐12,412 ‐10,116 ‐17,313 ‐9,842 ‐16,551 ‐24,506 

Model N 98,060 98,060 98,060 98,018 98,060 98,040 98,018 

Time Random Effects X X X X X X X 

Market Random Effects X X X X X X X 
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Table 5 

Propensity Weighted Hedonic Regression Estimates of Observed ln(AvgRent/SF). Each multivariate regression has a 
dependent variable of the natural log of average rent per square foot for the apartment complex sample (see Equation 1).  
See Table 2for definitions of other variables.  Each model is a GMM mixed effect regression with year and market as 
random effects on the intercept. Each model is propensity weighted by its likelihood of being a LEED building. Model (1) 
shows baseline results with only building level controls. Models (2-6) incorporate one vector of Density, Design, 
Destination Accessibility, Distance to Transit and Diversity respectively. Model 7 includes all five “D” vectors. ***, ** 
and * indicate significance at 99%. 95% and 90% levels, respectively. Standard errors are clustered at market level. 

Variable Model1 Model2 Model3 Model4 Model5 Model6 Model7 

Intercept ‐1.0066** ‐1.4454** ‐1.2701** ‐3.6201*** ‐1.1320** ‐0.8799*** ‐2.6161** 

garden_level ‐0.1116*** ‐0.0549*** ‐0.0858*** ‐0.0387*** ‐0.0774*** ‐0.1344*** ‐0.0110*** 

Highrise 0.1590*** 0.0942*** 0.1396*** 0.0892*** 0.1324*** 0.2344*** 0.0728*** 

Apartment_Building_Rating 0.2803*** 0.2546*** 0.2811*** 0.2596*** 0.2787*** 0.2778*** 0.2168*** 

Percentstudio 0.6683*** 0.6042*** 0.6443*** 0.5670*** 0.6504*** 0.6862*** 0.5309*** 

percent1bed 0.5033*** 0.4601*** 0.4864*** 0.4433*** 0.4849*** 0.1979*** 0.4124*** 

percent2bed 0.2289*** 0.2576*** 0.2503*** 0.2510*** 0.2464*** 0.0144 0.2412*** 

Ren10 ‐0.0148*** ‐0.0148*** ‐0.0144*** ‐0.0131*** ‐0.0093* ‐0.1125*** ‐0.0117*** 

Lnage ‐0.1027*** ‐0.1089*** ‐0.1036*** ‐0.1171*** ‐0.1044*** ‐0.0715*** ‐0.1113*** 

lnage2 0.0121*** 0.0107*** 0.0116*** 0.0157*** 0.0119*** 0.0127*** 0.0117*** 

Number_of_Buildings ‐0.0085*** ‐0.0027*** ‐0.0050*** ‐0.0023*** ‐0.0054*** ‐0.0160*** ‐0.0001 

Coast_QtrMile 0.1141*** 0.0619*** 0.1160*** 0.1226*** 0.1071*** 0.0580*** 0.0587*** 

Density_CBG_Residential   0.0431***         0.0183*** 

Density_Emp_Retail_8   ‐0.0055***         ‐0.0043*** 

Density_Emp_Office_8   0.0076***         0.0029*** 

Density_Emp_Ind_8   0.0021***         0.0007 

Density_Emp_Service_8   0.0154***         0.0096*** 

Density_Emp_Ent_8   0.0171***         0.0132*** 

Density_Emp_Edu_8   0.0010***         ‐0.0001 

Density_Emp_Health_8   ‐0.0048***         ‐0.0043*** 

Density_Emp_Public_8   ‐0.0193***         ‐0.0168*** 

Design_CBG_AutoLink     ‐0.0011***       ‐0.0041*** 

Design_CBG_MultiLinks     ‐0.0043***       ‐0.0038*** 

Design_CBG_PedestrianLink     0.0608***       0.0046** 

Design_CBG_IntersectionWeighted     0.0095***       0.0092*** 

Design_CBG_AutoInstersection_PSM     0.0006*       0.0013*** 

Design_CBG_Multi3Leg_PSM     0.0000       0.0004 

Design_CBG_Multi4Leg_PSM     0.0024***       0.0009*** 

Design_CBG_Ped3Leg_PSM     ‐0.0031***       ‐0.0001 

Design_CBG_Ped4Leg_PSM     ‐0.0084***       ‐0.0070*** 

Design_CBG_Park     0.0003       ‐0.0008** 

Design_Apartment_ParkAccess     ‐0.0455***       ‐0.0092*** 

Destination_Emp_Bike       0.0137***     0.0147*** 

Destination_Emp_Walk       0.0169***     0.0117*** 

Destination_CBG_Auto_Jobs45Min       0.2296***     0.1660*** 

Destination_CBG_RegAccess_Auto       0.2393***     0.1843*** 

Destination_CBG_RegCntrlty_Auto       ‐0.2732***     ‐0.2511*** 

Destination_CBG_Walkability       0.0199***     ‐0.0207*** 
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Destination_Emp_45Minsplus       ‐0.0279***     ‐0.0230*** 

Destination_Emp_30_45Mins       ‐0.0046***     ‐0.0135*** 

Destination_Emp_10_30Mins       0.0204***     ‐0.0185*** 

Destination_Emp_10Mins       0.0044***     ‐0.0008 

Distance_Emp_Trnst_QtrMile         ‐0.0041***   ‐0.0005 

Distance_Emp_Trnst_HalfMile         0.0059***   ‐0.0024*** 

Distance_CBG_TrnstFreq_PSM         0.0127***   0.0024*** 

Diversity_CBG_Edu_College_Some           ‐0.0682*** ‐0.0250*** 

Diversity_CBG_Edu_College_Trade           0.0256*** 0.0201*** 

Diversity_CBG_Edu_Bach_Assoc           0.0675*** 0.0072*** 

Diversity_CBG_Edu_Graduate           0.0459*** 0.0330*** 

Diversity_CBG_Owner_Occupied           ‐0.0322*** 0.0028*** 

Diversity_CBG_PercentLowWage           ‐0.2928*** ‐0.1562*** 

Diversity_Emp_JobsPerHousehold           0.0000*** 0.0000** 

Diversity_Emp_Entropy_8           ‐0.0222*** 0.0098* 

Diversity_CBG_TripEquilibrium           0.0112 ‐0.0563*** 

Diversity_Region_Emp_Diversity           ‐0.0085* 0.0230*** 

Diversity_Region_Emp_WkrsPerJob           0.2067*** 0.0661*** 

Diversity_Emp_WorkersPerJob           ‐0.0002* ‐0.0006*** 

Diversity_Emp_Equilibrium           ‐0.1785*** ‐0.0554*** 

AIC 335,731 324,635 331,993 323,856 332,377 407,242 312,083 

SIC 335,725 324,629 331,987 323,850 332,371 407,252 312,077 

Model N 98,060 98,060 98,060 98,018 98,060 98,040 98,018 

Time Random Effects X X X X X X X 

Market Random Effects X X X X X X X 

 



Appendix: 

Appendix Table 1 Density Means.  This Table shows sample means for variables from the EPA SLD and ACS census along with some custom made 

variables for “D” vector defined in the title.  Variable definitions may be found in Paper Table 2.  * indicates that the regressions in the paper use 

the natural log of this variable.  † indicates that a scalar adjustment of 1,000 mulQplicaQon was made prior to natural log to ensure all variables 

were positive sign.  
Market_Name Density_CBG_

Residen2al*† 

Density_Emp

_Edu_8*† 

Density_Emp

_Ent_8*† 

Density_Emp

_Health_8*† 

Density_Emp

_Ind_8*† 

Density_Emp

_Office_8*† 

Density_Emp

_Public_8*† 

Density_Emp

_Retail_8*† 

Density_Emp

_Service_8*† 

National 11.74 1.06 1.75 1.98 1.40 2.91 1.04 1.10 3.51 

Atlanta 3.64 0.30 0.61 0.68 0.67 1.04 0.33 0.41 1.21 

Austin 4.13 2.51 1.00 0.68 0.91 0.75 1.01 0.52 1.23 

Baltimore 7.74 1.87 1.07 2.07 1.19 1.58 2.29 0.71 2.34 

Boston 10.74 1.46 2.05 2.93 2.40 4.35 1.56 1.37 3.49 

Charlotte 2.43 0.19 0.52 0.75 0.50 1.27 0.27 0.35 1.35 

Chicago 24.88 2.56 3.37 2.87 1.68 4.43 1.20 1.63 7.06 

Cincinnati/Dayton 3.31 0.22 0.62 0.84 0.62 1.50 0.46 0.37 1.31 

Cleveland 4.53 0.60 0.68 0.83 0.68 0.88 0.33 0.37 1.24 

Columbus 3.74 0.28 0.53 0.66 0.48 0.86 0.73 0.47 0.96 

Dallas/Ft Worth 6.24 0.55 0.78 0.73 0.95 1.30 0.32 0.60 1.58 

Denver 6.98 2.26 1.24 1.60 1.15 2.40 1.40 0.77 2.80 

Detroit 4.28 0.25 0.56 1.21 0.52 0.53 0.32 0.45 0.95 

East Bay/Oakland 9.05 0.93 0.98 1.57 1.42 1.32 2.66 0.86 2.46 

Hampton Roads 4.05 0.48 0.67 0.53 0.54 0.70 0.25 0.56 0.95 

Hartford 4.25 0.51 0.87 0.92 0.84 3.95 0.71 0.35 2.47 

Houston 5.38 0.96 0.72 0.88 1.53 0.92 0.34 0.71 1.62 

Indianapolis 3.19 0.42 0.52 0.68 0.52 0.83 0.77 0.39 1.19 

Inland Empire (California) 4.23 0.38 0.41 0.51 0.43 0.21 0.14 0.51 0.63 

Kansas City 3.61 0.50 0.87 0.71 0.50 2.28 0.41 0.46 1.63 

Las Vegas 7.78 0.54 1.21 0.56 0.40 0.49 0.16 0.52 0.74 

Long Island (New York) 38.29 0.84 1.29 6.51 4.45 2.65 2.69 2.15 3.49 

Los Angeles 15.09 2.26 2.01 1.78 1.58 2.66 0.68 1.42 3.96 

Milwaukee/Madison 6.00 0.40 1.43 1.59 0.90 2.15 0.60 0.57 1.72 

Minneapolis/St Paul 6.97 0.68 1.63 1.78 1.33 3.39 0.92 0.79 2.77 

Nashville 2.54 0.40 0.65 0.74 0.53 0.73 1.13 0.34 0.85 

New York City 109.29 6.32 21.07 17.02 10.09 45.81 6.49 11.15 43.35 

Northern New Jersey 9.54 1.25 0.72 2.20 1.32 2.54 0.74 0.72 1.87 

Orange County (California) 7.12 0.51 0.91 0.88 1.16 0.72 0.30 0.77 1.37 

Orlando 3.37 0.24 0.54 0.37 0.41 0.48 0.44 0.38 0.85 
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Philadelphia 7.51 1.25 1.87 2.87 1.07 2.69 1.56 0.84 3.37 

Phoenix 6.26 0.69 0.70 0.96 0.85 0.75 0.39 0.63 1.37 

Pittsburgh 5.63 1.27 1.21 1.96 1.09 3.85 0.36 0.81 2.47 

Portland 6.05 0.62 1.15 1.37 1.07 1.80 0.57 0.93 1.86 

Raleigh/Durham 2.65 0.20 0.46 0.67 0.35 0.56 2.36 0.37 0.90 

Sacramento 5.20 0.33 0.52 0.61 0.36 0.50 1.08 0.50 0.96 

Salt Lake City 3.92 0.38 0.91 0.63 0.87 1.39 0.59 0.93 1.40 

San Antonio 3.90 0.66 0.61 1.16 0.54 0.74 0.16 0.50 0.74 

San Diego 7.76 0.52 1.22 0.94 0.78 0.63 1.00 0.72 1.61 

San Francisco 30.66 1.14 9.01 4.24 3.10 6.92 3.32 2.64 10.84 

Seattle/Puget Sound 10.62 1.23 2.41 3.03 2.67 3.37 1.48 1.66 6.08 

South Bay/San Jose 8.07 0.39 1.04 0.72 1.49 0.87 0.20 0.78 1.86 

South Florida 10.33 1.32 1.20 0.90 0.98 1.22 1.45 0.79 2.00 

St. Louis 4.74 0.28 1.44 2.51 0.90 1.24 0.25 0.48 1.90 

Tampa/St Petersburg 4.43 0.44 0.47 0.70 0.40 0.63 0.41 0.38 0.78 

Washington, DC 13.48 0.97 2.14 1.31 1.05 2.08 1.80 1.19 6.75 

West Michigan 2.59 0.32 0.44 2.34 0.66 0.40 0.29 0.30 0.63 

Westchester/So Connecticut 34.21 0.65 1.04 3.93 1.54 1.94 0.77 1.55 2.29 
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Appendix Table 2 Design Means. This Table shows sample means for variables from the EPA SLD and ACS census along with some custom made 

variables for “D” vector defined in the title.  Variable definitions may be found in Paper Table 2.  * indicates that the regressions in the paper use 

the natural log of this variable.  † indicates that a scalar adjustment of 1,000 mulQplicaQon was made prior to natural log to ensure all variables 

were positive sign. 
Market_Name Design_Apart

ment_ParkAc

cess*† 

Design_CBG_

AutoInstersec

2on_PSM*† 

Design_CBG_

AutoLink*† 

Design_CBG_I

ntersectionW

eighted*† 

Design_CBG_

Multi3Leg_PS

M*† 

Design_CBG_

Multi4Leg_PS

M*† 

Design_CBG_

Mul2Links*† 

Design_CBG_

Park*† 

Design_CBG_

Ped3Leg_PS

M*† 

Design_CBG_

Ped4Leg_PS

M*† 

Design_CBG_

PedestrianLin

k*† 

National 1.71 2.91 2.02 79.06 14.49 9.55 3.17         1,085  60.38 19.56 13.40 

Atlanta 2.15 2.53 1.93 53.87 13.97 4.13 2.34         1,754  50.40 6.81 9.92 

Austin 1.58 4.10 2.90 55.96 8.45 3.78 1.89         1,343  51.34 12.31 10.31 

Baltimore 1.27 2.26 1.47 99.44 21.11 17.03 4.74            842  69.76 21.80 14.07 

Boston 1.38 3.10 1.80 96.57 31.75 12.26 4.33         1,013  72.52 14.77 13.62 

Charlotte 3.33 1.86 1.61 48.89 9.67 3.77 1.81         2,305  44.56 8.95 9.52 

Chicago 0.89 1.81 1.05 93.74 15.01 13.36 3.24            432  64.96 27.04 15.15 

Cincinnati/Dayton 2.19 1.85 1.41 54.80 14.72 5.32 2.70         1,094  43.41 10.71 9.63 

Cleveland 2.38 1.59 1.20 55.02 15.11 5.44 2.50         1,536  43.04 10.79 9.96 

Columbus 1.78 2.06 1.80 64.75 14.53 5.15 2.58            949  57.79 11.36 10.66 

Dallas/Ft Worth 1.26 4.10 2.78 69.47 11.23 8.29 3.83            991  59.14 14.25 12.01 

Denver 0.86 2.35 1.51 90.51 9.10 8.01 2.97            664  72.04 28.38 14.21 

Detroit 1.67 2.88 1.70 63.61 15.48 4.56 2.46         1,024  50.81 14.84 11.61 

East Bay/Oakland 0.76 2.81 1.70 97.57 18.39 11.94 3.74            480  76.97 22.03 14.79 

Hampton Roads 1.95 2.76 2.60 72.74 10.14 5.59 2.00         1,453  62.85 18.47 12.63 

Hartford 1.71 1.78 1.34 49.12 17.97 4.74 2.61         1,173  37.25 7.56 9.13 

Houston 2.17 3.10 2.30 55.75 8.10 7.23 3.23         1,616  43.99 13.78 10.88 

Indianapolis 2.52 2.02 1.80 64.72 9.08 4.98 1.97         1,609  56.65 15.90 11.85 

Inland Empire 

(California) 

1.51 1.58 1.58 61.52 12.01 6.80 2.61            983  55.28 9.83 11.05 

Kansas City 2.62 2.79 2.13 78.38 14.17 8.33 2.59            950  62.92 18.63 12.70 

Las Vegas 1.88 2.54 2.12 72.18 11.91 5.89 2.68         1,241  68.62 12.58 11.64 

Long Island (New 

York) 

1.28 2.69 1.42 96.92 17.25 17.32 4.38            855  47.72 36.27 20.88 

Los Angeles 0.93 2.75 1.68 94.03 22.52 18.45 4.56            666  55.65 23.45 14.13 

Milwaukee/Madison 1.27 2.26 1.44 68.71 10.00 10.43 3.37            769  46.02 20.92 11.32 

Minneapolis/St Paul 2.31 4.38 3.17 82.12 9.95 8.35 2.87            657  64.32 24.23 13.19 

Nashville 3.56 1.94 1.42 56.21 11.66 4.67 2.18         2,037  48.47 11.43 9.81 

New York City 0.75 9.47 5.08 88.07 4.91 20.59 4.05            326  41.14 36.76 22.52 

Northern New Jersey 1.66 2.41 1.59 75.25 21.88 9.64 3.28         1,045  50.18 17.55 13.06 
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Orange County 

(California) 

0.76 4.12 3.70 83.99 17.21 7.74 3.55            561  79.46 11.77 12.75 

Orlando 3.65 1.98 2.30 55.14 7.31 3.42 1.70         2,916  54.03 10.81 11.36 

Philadelphia 3.81 1.69 1.12 82.18 14.10 8.36 2.67         2,031  59.35 24.82 14.18 

Phoenix 1.55 1.87 1.87 91.41 13.37 6.23 2.60            921  90.70 15.76 15.03 

Pittsburgh 2.30 2.64 1.14 87.08 20.66 8.74 3.16         1,516  62.10 23.14 13.59 

Portland 0.91 2.51 1.76 109.95 18.33 9.84 2.80            687  81.19 33.73 15.84 

Raleigh/Durham 2.09 2.11 1.87 52.34 10.94 4.27 2.03         1,621  47.73 8.94 9.36 

Sacramento 2.22 2.16 1.84 71.53 13.62 6.27 2.84            775  64.70 13.03 12.27 

Salt Lake City 1.80 1.63 1.46 69.30 16.10 6.54 2.64         1,208  58.82 12.79 11.83 

San Antonio 2.18 3.09 2.19 51.88 10.60 4.08 2.16         1,747  44.15 11.28 10.43 

San Diego 1.08 3.60 2.69 78.25 10.79 8.23 3.01            706  69.20 16.67 13.19 

San Francisco 0.62 5.30 2.90 139.54 18.12 24.91 6.11            349  97.25 37.68 18.22 

Seattle/Puget Sound 0.79 3.53 2.12 131.86 17.57 15.52 3.36            587  91.85 43.35 17.35 

South Bay/San Jose 0.93 5.17 3.05 101.59 18.66 10.73 4.38            561  92.88 16.46 14.44 

South Florida 1.33 2.48 2.38 92.66 12.58 9.11 2.98         1,075  76.06 24.43 15.89 

St. Louis 1.28 2.43 1.47 75.71 12.54 6.20 2.18            936  59.78 21.27 13.51 

Tampa/St Petersburg 2.57 2.00 2.24 74.99 9.48 5.14 1.71         1,640  71.09 16.11 13.64 

Washington, DC 1.34 3.45 2.01 84.77 14.06 13.20 3.85            832  62.05 20.81 13.95 

West Michigan 5.20 1.41 1.22 46.68 11.66 3.58 2.05         1,892  36.65 10.87 8.87 

Westchester/So 

Connecticut 

0.94 2.97 1.76 91.33 25.65 17.94 5.36            497  45.66 25.82 17.68 
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Appendix Table 3  Destination Means. This Table shows sample means for variables from the EPA SLD and ACS census along with some custom 

made variables for “D” vector defined in the title.  Variable definitions may be found in Paper Table 2.  * indicates that the regressions in the paper 

use the natural log of this variable.  † indicates that a scalar adjustment of 1,000 mulQplicaQon was made prior to natural log to ensure all variables 

were positive sign. 
Market_Name Destination_CB

G_Auto_Jobs4

5Min* 

Destination_CB

G_RegAccess_

Auto 

Destination_CB

G_RegCntrlty_

Auto 

Destination_CB

G_Walkability* 

Destination_E

mp_10_30Mins

* 

Destination_E

mp_10Mins* 

Destination_E

mp_30_45Mins

* 

Destination_Em

p_45Minsplus* 

Destination_E

mp_Bike* 

National           233,991  0.10 0.66 11.77            491                99             219             161  8.85 

Atlanta           173,175  0.10 0.64 10.04            546             102             263             202  3.48 

Austin           146,718  0.12 0.75 11.48            717             153             269             148  14.36 

Baltimore           156,655  0.05 0.65 12.74            432                74             214             187  3.92 

Boston           179,327  0.07 0.58 12.76            375                85             194             177  7.33 

Charlotte              94,849  0.28 0.70 8.11            527             122             213             111  1.73 

Chicago           274,951  0.03 0.54 12.64            389                76             209             201  10.69 

Cincinnati/Dayton              95,328  0.11 0.68 9.86            462             107             150                69  1.85 

Cleveland              96,154  0.19 0.69 9.73            434             108             165                87  3.15 

Columbus           128,959  0.08 0.67 11.09            635             123             220                79  4.65 

Dallas/Ft Worth           245,142  0.04 0.68 11.27            484             112             217             132  2.37 

Denver           169,513  0.15 0.76 13.06            522             114             212             127  20.53 

Detroit           141,032  0.10 0.66 9.30            351                81             141                90  3.74 

East Bay/Oakland           196,744  0.03 0.62 13.20            371                75             195             258  11.97 

Hampton Roads              74,142  0.09 0.65 11.84            529                99             176                83  4.05 

Hartford              83,265  0.24 0.67 8.91            433             106             130                70  2.54 

Houston           241,233  0.03 0.62 11.28            621             116             342             272  4.61 

Indianapolis           102,771  0.17 0.66 10.68            583             146             246             116  6.77 

Inland Empire 

(California) 

          145,230  0.05 0.43 10.28            483             118             179             195  5.01 

Kansas City           113,264  0.28 0.77 11.23            506             132             140                60  2.91 

Las Vegas           184,536  0.08 0.79 12.36            500                78             180                74  4.65 

Long Island (New York)           569,684  0.01 0.67 13.08            213                33             234             303  7.93 

Los Angeles           501,703  0.02 0.53 13.81            463                87             256             221  11.56 

Milwaukee/Madison              88,536  0.34 0.71 10.88            548             142             153                74  17.84 

Minneapolis/St Paul           199,573  0.11 0.69 12.72            533             107             179                91  11.15 

Nashville              82,769  0.28 0.65 7.70            632             123             249             162  3.42 

New York City        1,086,447  0.01 0.88 13.91            424                68             319             195  15.21 

Northern New Jersey           352,861  0.04 0.40 12.70            356                78             196             238  2.83 

Orange County 

(California) 

          444,810  0.01 0.44 13.78            572                99             227             164  13.53 
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Orlando           101,186  0.16 0.69 8.77         1,154             153             556             313  13.35 

Philadelphia           144,961  0.18 0.62 12.25            418                97             160             135  5.3 

Phoenix           217,385  0.04 0.77 9.11            436                92             169                87  13.52 

Pittsburgh           100,336  0.06 0.57 12.09            349                79             152             103  4.85 

Portland           113,771  0.23 0.70 13.71            507             130             175             115  23.72 

Raleigh/Durham           110,905  0.30 0.77 11.23            779             159             217             111  8.59 

Sacramento           119,975  0.13 0.69 12.03            422             101             159                93  20.81 

Salt Lake City           111,819  0.27 0.76 13.81            635             154             184                97  12.04 

San Antonio           129,089  0.08 0.74 7.87            617             120             205             104  3.03 

San Diego           161,442  0.05 0.64 13.00            658             101             249             141  7.72 

San Francisco           318,942  0.04 0.80 13.85            545                84             274             231  41.21 

Seattle/Puget Sound           174,195  0.05 0.64 13.61            463                89             206             143  12.86 

South Bay/San Jose           244,176  0.09 0.80 10.62            682                95             233             157  24.05 

South Florida           164,830  0.03 0.66 12.68            455                70             249             159  6.88 

St. Louis           135,589  0.06 0.70 12.23            491                92             181                86  3.18 

Tampa/St Petersburg              97,796  0.10 0.71 11.96            469                93             181             106  7.15 

Washington, DC           270,235  0.08 0.68 13.08            432                72             289             274  13.99 

West Michigan              56,788  0.46 0.75 7.42            473             130                91                59  4.84 

Westchester/So 

Connecticut 

          400,275  0.06 0.67 12.03            234                54             130             213  3.24 
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Appendix Table 4 Distance Means. This Table shows sample means for variables from the EPA SLD and ACS census along with some custom made 

variables for “D” vector defined in the title.  Variable definitions may be found in Paper Table 2.  * indicates that the regressions in the paper use 

the natural log of this variable.  † indicates that a scalar adjustment of 1,000 mulQplicaQon was made prior to natural log to ensure all variables 

were positive sign. 
Market_Name Distance_CBG_TrnstFreq_PSM*† Distance_Emp_Trnst_HalfMile*† Distance_Emp_Trnst_QtrMile*† 

National         1,348  0.18 0.10 

Atlanta            154  0.07 0.02 

Austin            521  0.04 0.01 

Baltimore            967  0.19 0.08 

Boston         6,002  0.33 0.20 

Charlotte  .  0.06 0.02 

Chicago         4,457  0.45 0.25 

Cincinnati/Dayton            331  0.00 0.00 

Cleveland            284  0.11 0.06 

Columbus            290  0.00 0.00 

Dallas/Ft Worth            260  0.10 0.04 

Denver            539  0.11 0.05 

Detroit            340  0.02 0.01 

East Bay/Oakland            660  0.20 0.07 

Hampton Roads               86  0.04 0.02 

Hartford            102  0.00 0.00 

Houston            273  0.02 0.01 

Indianapolis            281  0.00 0.00 

Inland Empire (California)            316  0.02 0.00 

Kansas City            493  0.10 0.06 

Las Vegas            163  0.12 0.06 

Long Island (New York)         3,221  0.76 0.46 

Los Angeles         2,486  0.22 0.07 

Milwaukee/Madison            735  0.02 0.01 

Minneapolis/St Paul         1,902  0.05 0.02 

Nashville                 0  0.01 0.00 

New York City         6,515  0.95 0.73 

Northern New Jersey         1,170  0.26 0.10 

Orange County (California)            217  0.02 0.01 

Orlando               10  0.00 0.00 

Philadelphia         1,662  0.23 0.13 
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Phoenix                 0  0.08 0.03 

Pittsburgh         1,205  0.18 0.08 

Portland         1,484  0.22 0.13 

Raleigh/Durham            123  0.00 0.00 

Sacramento            263  0.07 0.03 

Salt Lake City            591  0.21 0.08 

San Antonio  .  0.00 0.00 

San Diego            377  0.17 0.07 

San Francisco         7,406  0.59 0.35 

Seattle/Puget Sound         1,506  0.13 0.05 

South Bay/San Jose               26  0.30 0.11 

South Florida            678  0.10 0.05 

St. Louis            486  0.13 0.05 

Tampa/St Petersburg            247  0.02 0.01 

Washington, DC         1,924  0.31 0.11 

West Michigan               66  0.00 0.00 

Westchester/So Connecticut         1,202  0.62 0.39 
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Appendix Table 5 Diversity Means. This Table shows sample means for variables from the EPA SLD and ACS census along with some custom made 

variables for “D” vector defined in the title.  Variable definitions may be found in Paper Table 2.  * indicates that the regressions in the paper use 

the natural log of this variable.  † indicates that a scalar adjustment of 1,000 mulQplicaQon was made prior to natural log to ensure all variables 

were positive sign. 
Market_Name Diversity

_CBG_Ed

u_Bach_

Assoc* 

Diversity

_CBG_Ed

u_Colleg

e_Some* 

Diversity

_CBG_Ed

u_Colleg

e_Trade* 

Diversity

_CBG_Ed

u_Gradu

ate* 

Diversity

_CBG_O

wner_Oc

cupied* 

Diversity

_CBG_Pe

rcentLow

Wage 

Diversity

_CBG_Po

p_Mean

_Income

* 

Diversity

_CBG_Tri

pEquilibr

ium 

Diversity

_Emp_En

tropy_8 

Diversity

_Emp_Eq

uilibrium 

Diversity

_Emp_Jo

bsPerHo

usehold* 

Diversity

_Emp_W

orkersPe

rJob* 

Diversity

_Region_

Emp_Div

ersity 

Diversity

_Region_

Emp_Wk

rsPerJob 

National 412 198 36.59 161 294 0.24 831 0.44 0.61 0.36 4.86 7.51 0.28 0.46 

Atlanta 458 239 35.40 169 341 0.25 957 0.46 0.63 0.39 2.31 6.47 0.31 0.49 

Austin 551 240 38.89 210 321 0.23 1,018 0.47 0.64 0.43 2.74 5.05 0.33 0.51 

Baltimore 354 167 42.59 181 302 0.22 773 0.40 0.55 0.31 3.25 9.44 0.26 0.42 

Boston 373 130 42.00 206 291 0.28 740 0.48 0.71 0.41 6.63 0.56 0.11 0.16 

Charlotte 427 205 23.06 127 347 0.25 835 0.47 0.65 0.44 5.97 4.37 0.34 0.52 

Chicago 416 163 53.35 193 315 0.22 806 0.39 0.55 0.31 2.49 10.52 0.25 0.45 

Cincinnati/Dayt

on 

322 171 21.01 116 327 0.27 738 0.45 0.61 0.39 2.09 7.69 0.28 0.50 

Cleveland 312 179 31.27 114 329 0.27 780 0.47 0.63 0.39 3.24 6.08 0.31 0.51 

Columbus 438 217 30.26 144 355 0.25 898 0.45 0.63 0.40 2.36 7.69 0.31 0.51 

Dallas/Ft Worth 348 200 22.66 119 210 0.23 781 0.38 0.55 0.32 4.40 11.51 0.27 0.41 

Denver 439 192 34.04 166 290 0.23 843 0.43 0.60 0.36 2.67 6.49 0.34 0.43 

Detroit 270 176 19.74 109 265 0.28 687 0.42 0.56 0.35 2.07 8.90 0.25 0.47 

East 

Bay/Oakland 

450 204 27.89 183 261 0.21 783 0.43 0.63 0.32 1.86 5.49 0.27 0.45 

Hampton Roads 309 228 18.22 108 273 0.29 750 0.42 0.63 0.35 2.96 8.45 0.26 0.47 

Hartford 284 132 24.70 127 263 0.22 687 0.46 0.62 0.42 3.27 5.90 0.25 0.36 

Houston 514 288 40.09 193 420 0.23 1,064 0.43 0.62 0.38 2.76 7.48 0.29 0.49 

Indianapolis 448 224 36.36 145 422 0.26 945 0.42 0.60 0.40 2.73 8.69 0.31 0.49 

Inland Empire 

(California) 

300 266 16.58 82 285 0.26 834 0.46 0.62 0.34 1.47 6.60 0.18 0.47 

Kansas City 343 177 28.42 127 287 0.27 738 0.45 0.63 0.40 3.28 6.00 0.32 0.51 

Las Vegas 261 227 15.05 56 199 0.23 723 0.39 0.55 0.32 3.65 13.61 0.21 0.43 

Long Island 

(New York) 

363 126 37.94 155 177 0.22 660 0.32 0.52 0.24 6.49 14.60 0.18 0.39 

Los Angeles 480 230 41.27 147 208 0.28 881 0.49 0.64 0.34 5.08 4.49 0.26 0.49 

Milwaukee/Mad

ison 

417 160 38.83 160 332 0.27 803 0.43 0.58 0.36 3.23 7.04 0.31 0.48 

Minneapolis/St 

Paul 

430 175 32.67 133 329 0.25 794 0.49 0.63 0.42 3.00 4.96 0.38 0.52 

Nashville 474 247 28.66 152 426 0.26 971 0.41 0.61 0.38 3.07 9.36 0.30 0.47 

New York City 561 100 117.05 337 186 0.17 885 0.46 0.65 0.37 3.85 4.52 0.29 0.48 

Northern New 

Jersey 

385 143 32.99 190 261 0.22 712 0.45 0.59 0.37 2.77 7.73 0.30 0.49 



 45 

Orange County 

(California) 

463 229 33.55 141 233 0.22 783 0.43 0.61 0.31 5.88 8.64 0.24 0.43 

Orlando 939 466 50.53 244 674 0.28 1,694 0.46 0.68 0.37 2.05 4.05 0.29 0.51 

Philadelphia 334 147 33.41 141 334 0.24 727 0.44 0.62 0.38 4.00 6.92 0.29 0.50 

Phoenix 281 186 16.30 87 210 0.24 689 0.39 0.55 0.32 2.37 13.03 0.25 0.42 

Pittsburgh 332 111 33.34 145 323 0.25 676 0.47 0.63 0.41 10.64 4.67 0.35 0.51 

Portland 426 234 31.66 150 339 0.24 866 0.51 0.70 0.43 2.14 3.18 0.32 0.54 

Raleigh/Durham 619 213 46.57 283 426 0.23 1,069 0.46 0.65 0.39 3.39 7.30 0.37 0.48 

Sacramento 332 230 25.55 96 269 0.25 735 0.48 0.64 0.37 1.58 5.69 0.23 0.50 

Salt Lake City 396 262 19.91 104 332 0.30 822 0.48 0.71 0.46 6.27 2.17 0.41 0.52 

San Antonio 398 251 30.96 124 304 0.27 875 0.46 0.62 0.40 2.31 5.56 0.30 0.50 

San Diego 510 274 42.73 176 339 0.24 916 0.45 0.61 0.33 1.75 9.14 0.22 0.47 

San Francisco 608 216 85.58 283 256 0.20 1,007 0.51 0.67 0.39 27.13 3.17 0.35 0.48 

Seattle/Puget 

Sound 

441 189 31.72 174 239 0.20 833 0.45 0.64 0.38 2.85 4.44 0.34 0.48 

South Bay/San 

Jose 

552 186 38.85 369 296 0.18 902 0.46 0.67 0.34 61.46 4.41 0.27 0.49 

South Florida 396 191 34.98 111 291 0.25 774 0.41 0.56 0.33 27.16 12.13 0.24 0.45 

St. Louis 368 194 35.38 148 368 0.28 778 0.47 0.65 0.41 2.31 4.27 0.33 0.51 

Tampa/St 

Petersburg 

363 196 23.98 110 311 0.26 795 0.44 0.60 0.38 1.92 5.39 0.25 0.49 

Washington, DC 403 155 70.24 270 266 0.18 825 0.41 0.56 0.33 2.89 10.04 0.30 0.43 

West Michigan 301 177 17.90 109 309 0.28 721 0.46 0.59 0.42 2.24 6.20 0.30 0.53 

Westchester/So 

Connecticut 

229 124 22.70 101 133 0.24 579 0.33 0.47 0.26 1.62 13.93 0.20 0.40 

 

 


